Spheres and Spaghetti: Generalization and Exceptionality in Phonotactic Acquisition

Sarah Brogden Payne sarah.payne@stonybrook.edu

> SYNC March 4, 2023

Background: Motivation

	Attested	Unattested
Licit	spot	wug
Illicit	sphere	bnick

- Suggests that sphere should pattern like bnick
- sphere patterns like spot
 - Borrowings
 - New words
 - Production errors

Proposal

- **sphere** and **spot** are both **licit**
 - spot is fully-licit
 - sphere is marginal
- Illicit forms are always unattested
- Licit forms can be attested or unattested

		Attested	Unattested
Licit	Fully-Licit	spot	wug
	Marginal	sphere	spheal
Illicit			bnick

Proposal: Degree of Specification

Fully-licit vs. marginal forms: degree of specification

<u>Underspecified: /#sp/</u>

- Occurs before a wide range of vowels
 - spat, spell, spot, sputter
- Belongs to /#-[s] [voiceless-stop]/
 - {/#sp/, /#st/, /#sk/}

Fully-Specified: /#sf/

- Occurs before a limited number of vowels
 - sphere, sphinx
- Only similar onset = /#sv/
 svelte

Evidence for early underspecification in phonological learning

Proposal

- I propose a recursive model of learning phonotactic generalizations using the Tolerance-Sufficiency Principle
 - Increases the specification of sequences during learning
 - Contrasts fully-licit and marginal forms via degree of specification
 - Learns **positive grammar** from **positive data**
- Test this model on English complex onsets
 - Show that it learns *plausible phonotactic sequences*

Evidence: Marginal Forms are Licit

Evidence: Borrowings & Repairs

• Illicit forms are repaired in borrowings:

- Greek /pneumon/ → English /njumonia/
- German /pfitse/ → English /faiz./
- Spanish & Japanese: */#sC/

	Spanish	Japanese
Italian: /spagetti/	/espageti/	/supagetti/
Greek: /sfiŋks/	/esfinxe/	/swфinkwsw/
Greek: /sfaira/	/esfera/	(suupia)

Evidence: Borrowings & Repairs

• Illicit forms are repaired in borrowings:

- Greek /pneumon/ → English /njumonia/
- German /pfitse/ → English /faiz./
- Spanish & Japanese: */#sC/

	Spanish	Japanese	English
Italian: /spagetti/	/espageti/	/supagetti/	/spəgɛti/
Greek: /sfiŋks/	/esfinxe/	/swфinkwsw/	/sfinks/
Greek: /sfaira/	/esfera/	(suupia)	/sfij/

Evidence: New Words

Payne: Generalization & Exceptionality in Phonotactic Acquisition

Evidence: New Words

Payne: Generalization & Exceptionality in Phonotactic Acquisition

Evidence: Production & Perception

- Speakers have trouble producing illicit sequences
- But they don't have trouble producing /#sf/!
 - 97% accuracy /#sC/ sequences where
 C ∈ {f, p, t, k, m, n}

(Davidson 2006)

Payne: Generalization & Exceptionality in Phonotactic Acquisition

Evidence: Underspecification in Acquisition

Underspecification in Early Phonology

• Early discrimination:

- English–learning children at 1;2 (Yeung & Werker 2009):
 - Cannot discriminate /bɪ/ and /dɪ/ when lexical contrast implicated
 - Can discriminate [b] and [d] when phonetic contrast implicated
- English-learning children (Gierut 1996):
 - Producing /θ/ can discriminate /s/ and /θ/
 - Not producing /θ/ can not discriminate /s/ and /θ/
 - Both can not discriminate /f/ and /φ/

Underspecification in Early Phonology

- "Mispronunciation" studies (Hallé & Boysson-Bardies
 1966)
 - French-learning 11-month-olds:
 - Do not prefer known words to alternants with:
 - Different voicing (e,g. [gato] vs. [kato])
 - Different manner (e.g. [banan] vs. [vanan] vs. [balan])
- Suggests children have **knowledge of segments** but this knowledge is initially **featurally-underspecified**

Previous Work

Previous Work

Maximum Entropy

(Hayes & Wilson 2008)

- Negative grammar of markedness constraints
- Weighted markedness constraints ⇒ probability of output
- Goal of learning = determine constraints and ranking that maximize probability of observed forms
- Guaranteed to find global maximum

String Extension Learning

(Heinz 2010)

- Positive grammar of k-factors
- Accumulate k-factors from the input
 - *k*-factors = substrings of length *k*
- Add k-factors to the grammar as they are seen
- A string is licit if **all of its** *k*factors are licit
- Learnable in the Limit from Positive Data

Previous Work: Handling Marginal Forms

Maximum Entropy

- Weight e.g. */#sf/ less than */#bn/
 - Violating */#sf/ is less bad
- Hayes & Wilson remove "exotic onsets" from train
 - Performance hit when they're included

String Extension Learning

- If all k-factors seen in input, then string is licit
- No distinction between marginal and fully-licit inflected forms
- No **underspecification** in classic SEL
 - But see Chandlee et al (2019)

Proposal

Proposal: Measuring Generalizability

- The Tolerance-Sufficiency Principle (TSP, Yang 2016)
 - Threshold for generalization based on computational efficiency
 - Given a rule R applicable to N types and seen applying to M of those types, **generalize the rule iff:**

$$N-M \leq \boldsymbol{\theta}_N = \frac{N}{\ln N}$$

Proposal: Measuring Generalizability

- Given a sequence of underspecified feature sets, do a sufficient number of sequences fitting it occur?
 - Let $N = \prod n_i$ where n_i = # segments that fit features at position *i*
 - Let *M* be the number of distinct sequences observed that fit the entire feature set

• Check if
$$M - N \leq \frac{N}{\ln N}$$

Proposal: Recursive Learning

- Test feature-set sequence against the TSP
 - If passes, productive sequence learnt!
 - If not, **posit more specific sequence** by:
 - Finding position i with greatest difference between # observed segments and n_i
 - Adding the most frequent feature at this position to the representation
 - Subdivide & recurse
- Recursion ends either when:
 - A productive licit sequence is learnt
 - No more features available to subdivide \Rightarrow memorize

Proposal: Recursive Learning

- Example: English complex onsets
 - $N([+sibiliant] [-son, -cont]) = |\{z, s\} \times \{p, t, k, b, d, g\}| = 12$
 - *M* = number of distinct sequences that fit [+sibiliant] [-son, -cont]
 - Seen $\{sp, st, sk\} \Rightarrow M = 3$
 - $N M = 12 3 = 9 > \theta_{12} \approx 4.8 \times$
 - Subdivide: find position with greatest difference between number of observed & number of possible segments
 - First position: 2 possible, 1 observed \Rightarrow 1 difference
 - Second position: 6 possible, 3 observed \Rightarrow 3 difference
 - Add most frequent feature occurring at this position: <u>+voice</u>
 - Recurse: [+sibiliant] [-son, -cont, -voi] vs. [+sibiliant] [-son, -cont, +voi]

Experiment: English Complex Onsets

- We apply the model to a sample of child-directed speech
 - 5584 forms from the CHILDES Brown corpus
 - Transcribed using the CMU Pronouncing Dictionary
 - **Distinctive features** encoded for ARPABET based on those in Hayes & Wilson (2008)
 - Features can be **positive**, **negative**, **or unspecified**

Results: English Complex Onsets

Complex Onset	Example
<pre>{+cont, +cons, +strident, +coronal, -son, +anterior, -approx, -voi, -V} {+son, +cons, -approx, +labial, +nasal, -V} {+V, -cons, +approx}</pre>	small, smell
<pre>{+cont, +cons, +strident, +coronal, -son, +anterior, -approx, -voi, -V} {+cons, -son, -cont, -approx, -voi, -V} {+approx}</pre>	skip, spatter, spray
<pre>{+cons, -son, +voi, -cont, -approx, -V} {+son, +cons, +anterior, +coronal, +approx, -strident, -V} {+V, -cons, +approx}</pre>	break, drab, black
<pre>{+cont, +cons, +strident, +coronal, -son, +anterior, -approx, -voi, -V} {+cons, +coronal, +anterior, -son, -cont, -approx, -strident, -voi, -V} {+son, +cons, +anterior, +coronal, +approx, -strident, -V}</pre>	stress, strike
<pre>{+cont, +cons, +strident, +coronal, -son, +anterior, -approx, -voi, -V} {+cons, +coronal, +anterior, -son, -cont, -approx, -strident, -voi, -V} {+V, -cons, +approx}</pre>	still, stem
<pre>{+cons, -son, -approx, -voi, -V} {+son, +cons, +anterior, +coronal, -strident, -V} {+V, -cons, +approx}</pre>	plank, throw, floor

Results: Productive English Complex Onsets

- Onsets that don't start with /s/:
 - Voiced stops and voiceless stops and fricatives can precede liquids
 - e.g. **/#bl/**, **/#tr/**, **/#sl/**
 - Voiced fricatives cannot
 - e.g. */#zl/
- Onsets that do start with /s/:
 - Second position can be a voiceless stop & third can be vowel or liquid
 - e.g. **/#str/**, **/#spl/**
 - Second position can be a nasal
 - Only sees /#sm/ so does not generalize to /#sn/ or /#sŋ/

Conclusion & Future Directions

- Model of phonotactic acquisition that uses recursive search & the Tolerance-Sufficiency Principle
 - Learns **positive grammar** from **positive data**
 - Increasing specification of licit sequences
 - Fully-licit vs. marginal vs. illicit forms
- Future directions:
 - Apply to more languages
 - Incorporate syllable structure
 - Long-distance dependencies

Thank you!!

I am grateful to Jeff Heinz, Jordan Kodner, and Charles Yang for their mentorship; Kyle Gorman, Scott Nelson, and Huteng Dai for helpful discussion; and Logan Swanson and Salam Khalifa for support throughout this project.

I am grateful for funding by the Institute for Advanced Computational Science and National Science Foundation.

Payne: Generalization & Exceptionality in Phonotactic Acquisition

Proposal: Degree of Specification

Number of Distinct Vowels Following Each /sC/ Cluster in CMU Dictionary

Previous Work: Gradient Models

- MaxEnt (Hayes & Wilson 2008): well-formedness = probability
 - Weighted markedness constraints \Rightarrow probability of output
 - Goal of learning = determine constraints and ranking that maximize probability of observed forms
 - Guaranteed to find global maximum

Previous Work: Categorical Models

- String-Extension Learning (SEL, Heinz 2010): accumulate k-factors from the input to form a positive grammar
 - Initial grammar = ϕ
 - For some input t[i], the output of the learner ϕ is: $\phi(t[i]) = \phi(t[i-1]) \cup \{x \in \Sigma^k : \exists u, v \in \Sigma^*, w = uxv\}$
 - The language of the resulting grammar is given by: $L(G) = \{ w \in \Sigma^* : fac_k(w) \subseteq G \}$
 - Strictly Local languages are Learnable in the Limit from Positive Data

