
A Generalized Algorithm for Learning Positive
and Negative Grammars with Unconventional

String Models

Sarah Brogden Payne
sarah.payne@stonybrook.edu

paynesa.github.io

SCiL, UC Irvine
June 27, 2024

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 1

https://paynesa.github.io/

Overview

• Previous work: learning formal languages with symbolic
representations (Heinz, 2010b; Heinz et al., 2012, i.a.)

• Grammars as collections of forbidden or allowed combinations

1 2

s S

<

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 2

Overview

• Previous work: learning formal languages with symbolic
representations (Heinz, 2010b; Heinz et al., 2012, i.a.)

• Grammars as collections of forbidden or allowed combinations

1 2

s S

<

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 2

Overview

• Previous work: learning formal languages with symbolic
representations (Heinz, 2010b; Heinz et al., 2012, i.a.)

• Grammars as collections of forbidden or allowed combinations

• Chandlee et al. (2019): learn with feature-based representations

• Grammars as collections of forbidden combinations

1 2

+Str
+Ant
-Voi

+Str
-Ant
-Voi

<

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 3

Overview

• Previous work: learning formal languages with symbolic
representations (Heinz, 2010b; Heinz et al., 2012, i.a.)

• Grammars as collections of forbidden or allowed combinations

• Chandlee et al. (2019): learn with feature-based representations
• Grammars as collections of forbidden combinations

1 2

+Str
+Ant
-Voi

+Str
-Ant
-Voi

<

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 3

Overview

• Previous work: learning formal languages with symbolic
representations (Heinz, 2010b; Heinz et al., 2012, i.a.)

• Grammars as collections of forbidden or allowed combinations

• Chandlee et al. (2019): learn with feature-based representations
• Grammars as collections of forbidden combinations
• What about collections of allowed combinations?

• This talk: algorithm for learning grammars as collections of allowed
or forbidden feature-based combinations in a unified way

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 4

Overview

• Previous work: learning formal languages with symbolic
representations (Heinz, 2010b; Heinz et al., 2012, i.a.)

• Grammars as collections of forbidden or allowed combinations

• Chandlee et al. (2019): learn with feature-based representations
• Grammars as collections of forbidden combinations
• What about collections of allowed combinations?

• This talk: algorithm for learning grammars as collections of allowed
or forbidden feature-based combinations in a unified way

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 4

Example: Samala Sibilant Harmony

Examples (Samala Sibilant Harmony)

• Subsequences such as [s...s] that agree in ±Anterior are allowed

• Subsequences such as [s...S] which disagree are banned

! [hasxintilawas] % [hasxintilawaS]

(Hansson, 2010)

Negative Grammar (G−)

[+Ant][-Ant] ∈ G− ⇒ sSt ̸∈ L(G−)

Since [+Ant][-Ant] covers [sS]

Positive Grammar (G+)

[+Str][-Str],[+Ant][-Ant] ∈ G+

⇒ sSt ∈ L(G+)

Since [+Ant][-Ant] covers [sS] and
[+Str][-Str] covers [St]

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 5

Example: Samala Sibilant Harmony

Examples (Samala Sibilant Harmony)

• Subsequences such as [s...s] that agree in ±Anterior are allowed

• Subsequences such as [s...S] which disagree are banned

! [hasxintilawas] % [hasxintilawaS]

(Hansson, 2010)

Negative Grammar (G−)

[+Ant][-Ant] ∈ G− ⇒ sSt ̸∈ L(G−)

Since [+Ant][-Ant] covers [sS]

Positive Grammar (G+)

[+Str][-Str],[+Ant][-Ant] ∈ G+

⇒ sSt ∈ L(G+)

Since [+Ant][-Ant] covers [sS] and
[+Str][-Str] covers [St]

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 5

Example: Samala Sibilant Harmony

Examples (Samala Sibilant Harmony)

• Subsequences such as [s...s] that agree in ±Anterior are allowed

• Subsequences such as [s...S] which disagree are banned

! [hasxintilawas] % [hasxintilawaS]

(Hansson, 2010)

Negative Grammar (G−)

[+Ant][-Ant] ∈ G− ⇒ sSt ̸∈ L(G−)

Since [+Ant][-Ant] covers [sS]

Positive Grammar (G+)

[+Str][-Str],[+Ant][-Ant] ∈ G+

⇒ sSt ∈ L(G+)

Since [+Ant][-Ant] covers [sS] and
[+Str][-Str] covers [St]

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 5

Why Positive Grammars?

Psycholinguistic Motivation Computational Motivation

• Child may construct positive
phonological and phonotactic
grammars (Belth, 2023; Payne,
2023, i.a.)

• Evidence for positive syntactic
and morphological grammars
(Marcus et al., 1992; Yang, 2016;

Belth et al., 2021; Li and Schuler,

2023, i.a.)

• Post-hoc conversion between
positive & negative grammars is
straightforward for symbolic
models (Heinz, 2010b)

• Post-hoc conversion is
exponentially more costly for
models that use features

• Grammar polarity has
implications for the learning
trajectory

By fixing k — the size of the learned substructures — we can
straightforwardly adapt the algorithm of Chandlee et al. (2019) to
learn the most general positive and negative grammars over

feature-based models

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 6

Why Positive Grammars?

Psycholinguistic Motivation Computational Motivation
• Child may construct positive
phonological and phonotactic
grammars (Belth, 2023; Payne,
2023, i.a.)

• Evidence for positive syntactic
and morphological grammars
(Marcus et al., 1992; Yang, 2016;

Belth et al., 2021; Li and Schuler,

2023, i.a.)

• Post-hoc conversion between
positive & negative grammars is
straightforward for symbolic
models (Heinz, 2010b)

• Post-hoc conversion is
exponentially more costly for
models that use features

• Grammar polarity has
implications for the learning
trajectory

By fixing k — the size of the learned substructures — we can
straightforwardly adapt the algorithm of Chandlee et al. (2019) to
learn the most general positive and negative grammars over

feature-based models

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 6

Why Positive Grammars?

Psycholinguistic Motivation Computational Motivation
• Child may construct positive
phonological and phonotactic
grammars (Belth, 2023; Payne,
2023, i.a.)

• Evidence for positive syntactic
and morphological grammars
(Marcus et al., 1992; Yang, 2016;

Belth et al., 2021; Li and Schuler,

2023, i.a.)

• Post-hoc conversion between
positive & negative grammars is
straightforward for symbolic
models (Heinz, 2010b)

• Post-hoc conversion is
exponentially more costly for
models that use features

• Grammar polarity has
implications for the learning
trajectory

By fixing k — the size of the learned substructures — we can
straightforwardly adapt the algorithm of Chandlee et al. (2019) to
learn the most general positive and negative grammars over

feature-based models

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 6

Why Positive Grammars?

Psycholinguistic Motivation Computational Motivation
• Child may construct positive
phonological and phonotactic
grammars (Belth, 2023; Payne,
2023, i.a.)

• Evidence for positive syntactic
and morphological grammars
(Marcus et al., 1992; Yang, 2016;

Belth et al., 2021; Li and Schuler,

2023, i.a.)

• Post-hoc conversion between
positive & negative grammars is
straightforward for symbolic
models (Heinz, 2010b)

• Post-hoc conversion is
exponentially more costly for
models that use features

• Grammar polarity has
implications for the learning
trajectory

By fixing k — the size of the learned substructures — we can
straightforwardly adapt the algorithm of Chandlee et al. (2019) to
learn the most general positive and negative grammars over

feature-based models

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 6

Why Positive Grammars?

Psycholinguistic Motivation Computational Motivation
• Child may construct positive
phonological and phonotactic
grammars (Belth, 2023; Payne,
2023, i.a.)

• Evidence for positive syntactic
and morphological grammars
(Marcus et al., 1992; Yang, 2016;

Belth et al., 2021; Li and Schuler,

2023, i.a.)

• Post-hoc conversion between
positive & negative grammars is
straightforward for symbolic
models (Heinz, 2010b)

• Post-hoc conversion is
exponentially more costly for
models that use features

• Grammar polarity has
implications for the learning
trajectory

By fixing k — the size of the learned substructures — we can
straightforwardly adapt the algorithm of Chandlee et al. (2019) to
learn the most general positive and negative grammars over

feature-based models

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 6

Why Positive Grammars?

Psycholinguistic Motivation Computational Motivation
• Child may construct positive
phonological and phonotactic
grammars (Belth, 2023; Payne,
2023, i.a.)

• Evidence for positive syntactic
and morphological grammars
(Marcus et al., 1992; Yang, 2016;

Belth et al., 2021; Li and Schuler,

2023, i.a.)

• Post-hoc conversion between
positive & negative grammars is
straightforward for symbolic
models (Heinz, 2010b)

• Post-hoc conversion is
exponentially more costly for
models that use features

• Grammar polarity has
implications for the learning
trajectory

By fixing k — the size of the learned substructures — we can
straightforwardly adapt the algorithm of Chandlee et al. (2019) to
learn the most general positive and negative grammars over

feature-based models

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 6

Why Positive Grammars?

Psycholinguistic Motivation Computational Motivation
• Child may construct positive
phonological and phonotactic
grammars (Belth, 2023; Payne,
2023, i.a.)

• Evidence for positive syntactic
and morphological grammars
(Marcus et al., 1992; Yang, 2016;

Belth et al., 2021; Li and Schuler,

2023, i.a.)

• Post-hoc conversion between
positive & negative grammars is
straightforward for symbolic
models (Heinz, 2010b)

• Post-hoc conversion is
exponentially more costly for
models that use features

• Grammar polarity has
implications for the learning
trajectory

By fixing k — the size of the learned substructures — we can
straightforwardly adapt the algorithm of Chandlee et al. (2019) to
learn the most general positive and negative grammars over

feature-based models

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 6

Table of Contents

1 Preliminaries

2 Subfactors and Maxfactors

3 Grammars and Their Languages

4 The Learning Algorithm

5 Example: Samala Sibilant Harmony

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 7

Table of Contents

1 Preliminaries

2 Subfactors and Maxfactors

3 Grammars and Their Languages

4 The Learning Algorithm

5 Example: Samala Sibilant Harmony

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 8

Finite Model Theory

Model Signature: a set of relations R = {R1,R2, ...,Rn}
• Each Ri is an mi -ary relation

R-Structure: a tuple of elements S = ⟨D;R1,R2, ...,Rn⟩
• D, the domain, is a finite set of elements

• Each Ri is a subset of Dmi

Size |S | of an R-structure = cardinality of its domain

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 9

Finite Model Theory

Model Signature: a set of relations R = {R1,R2, ...,Rn}
• Each Ri is an mi -ary relation

R-Structure: a tuple of elements S = ⟨D;R1,R2, ...,Rn⟩
• D, the domain, is a finite set of elements

• Each Ri is a subset of Dmi

Size |S | of an R-structure = cardinality of its domain

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 9

Finite Model Theory

Model Signature: a set of relations R = {R1,R2, ...,Rn}
• Each Ri is an mi -ary relation

R-Structure: a tuple of elements S = ⟨D;R1,R2, ...,Rn⟩
• D, the domain, is a finite set of elements

• Each Ri is a subset of Dmi

Size |S | of an R-structure = cardinality of its domain

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 9

Precedence and Successor Models

Precedence Model: M<(w) := ⟨Dw ;<, [Rw
σ]σ∈Σ⟩

• Dw = {1, ..., |w |} is the domain of positions in w

• <:= {(i , j) ∈ Dw × Dw | i < j} is the general precedence relation

1 2 3 4

+Ant +Ant -Ant -Ant

<

<

<

<

< <

(Büchi, 1960; McNaughton and Papert, 1971; Rogers et al., 2013)

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 10

Precedence and Successor Models

Successor Model: M�(w) := ⟨Dw ;�, [Rw
σ]σ∈Σ⟩

• Dw = {1, ..., |w |} is the domain of positions in w

• � := {(i , i + 1) ∈ Dw × Dw} is the successor relation

1 2 3 4

+Ant +Ant -Ant -Ant

� � �

(Büchi, 1960; McNaughton and Papert, 1971; Rogers et al., 2013)

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 11

Table of Contents

1 Preliminaries

2 Subfactors and Maxfactors

3 Grammars and Their Languages

4 The Learning Algorithm

5 Example: Samala Sibilant Harmony

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 12

Subfactors & Maxfactors

An R-structure A is a subfactor of an R-structure B (notated A ⊑ B) if:

1 There is a mapping between DA and some subset of DB

2 All relations that hold in A also hold over the corresponding elements
in B

An R-structure A is a maxfactor of an R-structure B (notated A ≤ B) if
1 and 2 are satisfied and:

3 All relations that hold in B also hold over the corresponding elements
in A

Subfactor:
Unidirectional

Maxfactor:
Bidirectional

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 13

Subfactors & Maxfactors

An R-structure A is a subfactor of an R-structure B (notated A ⊑ B) if:

1 There is a mapping between DA and some subset of DB

2 All relations that hold in A also hold over the corresponding elements
in B

An R-structure A is a maxfactor of an R-structure B (notated A ≤ B) if
1 and 2 are satisfied and:

3 All relations that hold in B also hold over the corresponding elements
in A

Subfactor:
Unidirectional

Maxfactor:
Bidirectional

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 13

Subfactors & Maxfactors

An R-structure A is a subfactor of an R-structure B (notated A ⊑ B) if:

1 There is a mapping between DA and some subset of DB

2 All relations that hold in A also hold over the corresponding elements
in B

An R-structure A is a maxfactor of an R-structure B (notated A ≤ B) if
1 and 2 are satisfied and:

3 All relations that hold in B also hold over the corresponding elements
in A

Subfactor:
Unidirectional

Maxfactor:
Bidirectional

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 13

Subfactors & Maxfactors

An R-structure A is a subfactor of an R-structure B (notated A ⊑ B) if:

1 There is a mapping between DA and some subset of DB

2 All relations that hold in A also hold over the corresponding elements
in B

An R-structure A is a maxfactor of an R-structure B (notated A ≤ B) if
1 and 2 are satisfied and:

3 All relations that hold in B also hold over the corresponding elements
in A

Subfactor:
Unidirectional

Maxfactor:
Bidirectional

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 13

Subfactors & Maxfactors

An R-structure A is a subfactor of an R-structure B (notated A ⊑ B) if:

1 There is a mapping between DA and some subset of DB

2 All relations that hold in A also hold over the corresponding elements
in B

An R-structure A is a maxfactor of an R-structure B (notated A ≤ B) if
1 and 2 are satisfied and:

3 All relations that hold in B also hold over the corresponding elements
in A

Subfactor:
Unidirectional

Maxfactor:
Bidirectional

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 13

Subfactors & Maxfactors

An R-structure A is a subfactor of an R-structure B (notated A ⊑ B) if:

1 There is a mapping between DA and some subset of DB

2 All relations that hold in A also hold over the corresponding elements
in B

An R-structure A is a maxfactor of an R-structure B (notated A ≤ B) if
1 and 2 are satisfied and:

3 All relations that hold in B also hold over the corresponding elements
in A

Subfactor:
Unidirectional

Maxfactor:
Bidirectional

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 13

Subfactors & Maxfactors

An R-structure A is a subfactor of an R-structure B (notated A ⊑ B) if:

1 There is a mapping between DA and some subset of DB

2 All relations that hold in A also hold over the corresponding elements
in B

An R-structure A is a maxfactor of an R-structure B (notated A ≤ B) if
1 and 2 are satisfied and:

3 All relations that hold in B also hold over the corresponding elements
in A

Subfactor:
Unidirectional

Maxfactor:
Bidirectional

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 13

Subfactors vs. Maxfactors

Examples (Samala Sibilant Harmony)

1 2 3

+str
+ant

+str
-ant

-str
+ant

< <

<

Subfactor:
Unidirectional

Maxfactor:
Bidirectional

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 14

Subfactors vs. Maxfactors

Examples (Samala Sibilant Harmony)

1 2 3

1 2

+str
+ant

+str
-ant

-str
+ant

+str
+ant

+str
-ant

< <

<

<

Subfactor:
Unidirectional

Maxfactor:
Bidirectional

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 15

Subfactors vs. Maxfactors

Examples (Samala Sibilant Harmony)

1 2 3

1 2

+str
+ant

+str
-ant

-str
+ant

+str
+ant

+str
-ant

< <

<

<

!Subfactor:
Unidirectional

!Maxfactor:
Bidirectional

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 16

Subfactors vs. Maxfactors

Examples (Samala Sibilant Harmony)

1 2 3 1 3

1 2

+str
+ant

+str
-ant

-str
+ant

+str
+ant

+str
-ant

+ant +ant

< < <

<

<

Subfactor:
Unidirectional

Maxfactor:
Bidirectional

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 17

Subfactors vs. Maxfactors

Examples (Samala Sibilant Harmony)

1 2 3 1 3

1 2

+str
+ant

+str
-ant

-str
+ant

+str
+ant

+str
-ant

+ant +ant

< < <

<

<

!Subfactor:
Unidirectional

%Maxfactor:
Bidirectional

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 18

Subfactors vs. Maxfactors

Examples (Samala Sibilant Harmony)

1 2 3 1 3

1 2 2 3

+str
+ant

+str
-ant

-str
+ant

+str
+ant

+str
-ant

+ant +ant

+str -str

< < <

<

< <

Subfactor:
Unidirectional

Maxfactor:
Bidirectional

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 19

Subfactors vs. Maxfactors

Examples (Samala Sibilant Harmony)

1 2 3 1 3

1 2 2 3

+str
+ant

+str
-ant

-str
+ant

+str
+ant

+str
-ant

+ant +ant

+str -str

< < <

<

< <

!Subfactor:
Unidirectional

%Maxfactor:
Bidirectional

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 20

k-Subfactors and k-Maxfactors

Definition: k-Subfactors

If A ⊑ B and |A| = k, then A is a
k-subfactor of B

Definition: k-Maxfactors

If A ≤ B and |A| = k , then A is
k-maxfactor of B

Let the set of k-subfactors of an
R-structure B be given by:

Sfack(B) := {A | A ⊑ B, |A| = k}

Let the set of k-maxfactors of B
be given by:

Mfack(B) := {A | A ≤ B, |A| = k}

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 21

k-Subfactors and k-Maxfactors

Definition: k-Subfactors

If A ⊑ B and |A| = k, then A is a
k-subfactor of B

Definition: k-Maxfactors

If A ≤ B and |A| = k , then A is
k-maxfactor of B

Let the set of k-subfactors of an
R-structure B be given by:

Sfack(B) := {A | A ⊑ B, |A| = k}

Let the set of k-maxfactors of B
be given by:

Mfack(B) := {A | A ≤ B, |A| = k}

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 21

Table of Contents

1 Preliminaries

2 Subfactors and Maxfactors

3 Grammars and Their Languages

4 The Learning Algorithm

5 Example: Samala Sibilant Harmony

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 22

Positive vs. Negative Grammars

Grammar G = finite set of k-subfactors
Language defined by G depends on its interpretation:

Negative Grammar (G−)

Elements of G− are forbidden,
and strings in L(G−) contain
no forbidden subfactors

Positive Grammar (G+)

Elements of G+ are
permissible, and strings in
L(G+) are those which are
tiled by these elements

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 23

Positive vs. Negative Grammars

Grammar G = finite set of k-subfactors
Language defined by G depends on its interpretation:

Negative Grammar (G−)

Elements of G− are forbidden,
and strings in L(G−) contain
no forbidden subfactors

Positive Grammar (G+)

Elements of G+ are
permissible, and strings in
L(G+) are those which are
tiled by these elements

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 23

Positive vs. Negative Grammars

Grammar G = finite set of k-subfactors
Language defined by G depends on its interpretation:

Negative Grammar (G−)

Elements of G− are forbidden,
and strings in L(G−) contain
no forbidden subfactors

Positive Grammar (G+)

Elements of G+ are
permissible, and strings in
L(G+) are those which are
tiled by these elements

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 23

Positive Grammars: Tiling

Figure courtesy of Rogers and Heinz (2014)

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 24

Languages of Positive vs. Negative Grammars

Negative Grammar

The language L(G−) of G− is given
by:

L(G−) ={w ∈ Σ∗ | (∀S ∈ Mfack(M,w))

[Sfack(S) ∩ G− = ∅]}

or equivalently by:

L(G−) ={w ∈ Σ∗ | (∄S ∈ Mfack(M,w))

[Sfack(S) ∩ G− ̸= ∅]}

Positive Grammar

The language L(G+) of G+ is given
by:

L(G+) ={w ∈ Σ∗ | (∀S ∈ Mfack(M,w))

[Sfack(S) ∩ G+ ̸= ∅]}

or equivalently by:

L(G+) ={w ∈ Σ∗ | (∄S ∈ Mfack(M,w))

[Sfack(S) ∩ G+ = ∅]}

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 25

Languages of Positive vs. Negative Grammars

Negative Grammar

The language L(G−) of G− is given
by:

L(G−) ={w ∈ Σ∗ | (∀S ∈ Mfack(M,w))

[Sfack(S) ∩ G−= ∅]}

or equivalently by:

L(G−) ={w ∈ Σ∗ | (∄S ∈ Mfack(M,w))

[Sfack(S) ∩ G− ̸= ∅]}

Positive Grammar

The language L(G+) of G+ is given
by:

L(G+) ={w ∈ Σ∗ | (∀S ∈ Mfack(M,w))

[Sfack(S) ∩ G+ ̸= ∅]}

or equivalently by:

L(G+) ={w ∈ Σ∗ | (∄S ∈ Mfack(M,w))

[Sfack(S) ∩ G+= ∅]}

Positive Grammar Negative Grammar

Negative Grammar Positive Grammar

∈ G ̸∈ G

∀

∃

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 26

Table of Contents

1 Preliminaries

2 Subfactors and Maxfactors

3 Grammars and Their Languages

4 The Learning Algorithm

5 Example: Samala Sibilant Harmony

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 27

Previous Work

Crucial insight of Chandlee et al. (2019): grammatical entailment

[]

[+Str][+Ant] [+Voi] ...

[+Ant, +Str] [+Str][]

[+Ant, +Str][] [+Str][+Ant, +Str] [+Str][+Str]

% % %

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 28

Chandlee et al. (2019) Algorithm

S
• Bottom-up traversal

• For a given subfactor S , check whether
S ⊑ x for any x in the data D

• If not, posit a constraint: S ∈ G−

• If so, cannot posit a constraint
Add the least superfactors of S to
the queue to be considered next

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 29

Chandlee et al. (2019) Algorithm

S
• Bottom-up traversal
• For a given subfactor S , check whether

S ⊑ x for any x in the data D

• If not, posit a constraint: S ∈ G−

• If so, cannot posit a constraint
Add the least superfactors of S to
the queue to be considered next

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 29

Chandlee et al. (2019) Algorithm

S
• Bottom-up traversal
• For a given subfactor S , check whether

S ⊑ x for any x in the data D
• If not, posit a constraint: S ∈ G−

• If so, cannot posit a constraint
Add the least superfactors of S to
the queue to be considered next

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 29

Chandlee et al. (2019) Algorithm

S
• Bottom-up traversal
• For a given subfactor S , check whether

S ⊑ x for any x in the data D
• If not, posit a constraint: S ∈ G−

• If so, cannot posit a constraint
Add the least superfactors of S to
the queue to be considered next

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 29

Least Superfactors

Least Superfactors of S (NextSupFact(S)) are the superfactors of S
that differ minimally from S

Examples (Next superfactors of [+Ant])

If S = [+Ant] and the only features available are ±Ant, ±Voi and ±Str:

NextSupFact(S) ={[+Ant, -Str], [+Ant, +Str]

[+Ant, -Voi], [+Ant, +Voi]}

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 30

Least Superfactors

Least Superfactors of S (NextSupFact(S)) are the superfactors of S
that differ minimally from S

Examples (Next superfactors of [+Ant])

If S = [+Ant] and the only features available are ±Ant, ±Voi and ±Str:

NextSupFact(S) ={[+Ant, -Str], [+Ant, +Str]

[+Ant, -Voi], [+Ant, +Voi]}

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 30

Intuition

S

For a negative grammar:

• Add S to G− if S ̸⊑ x for any x ∈ D

• Equivalent: Given the set of all
maxfactors that are superfactors of S ,
none are attested in D

Positive Grammar Negative Grammar

Negative Grammar Positive Grammar

∈ D ̸∈ D

∀

∃

For a positive grammar:

• Given the set of all maxfactors that are
superfactors of S , all are attested in D

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 31

Intuition

S

For a negative grammar:

• Add S to G− if S ̸⊑ x for any x ∈ D

• Equivalent: Given the set of all
maxfactors that are superfactors of S ,
none are attested in D

Positive Grammar Negative Grammar

Negative Grammar Positive Grammar

∈ D ̸∈ D

∀

∃

For a positive grammar:

• Given the set of all maxfactors that are
superfactors of S , all are attested in D

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 31

Intuition

S

For a negative grammar:

• Add S to G− if S ̸⊑ x for any x ∈ D

• Equivalent: Given the set of all
maxfactors that are superfactors of S ,
none are attested in D

Positive Grammar Negative Grammar

Negative Grammar Positive Grammar

∈ D ̸∈ D

∀

∃

For a positive grammar:

• Given the set of all maxfactors that are
superfactors of S , all are attested in D

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 31

Intuition

S

For a negative grammar:

• Add S to G− if S ̸⊑ x for any x ∈ D

• Equivalent: Given the set of all
maxfactors that are superfactors of S ,
none are attested in D

Positive Grammar Negative Grammar

Negative Grammar Positive Grammar

∈ D ̸∈ D

∀

∃

For a positive grammar:

• Given the set of all maxfactors that are
superfactors of S , all are attested in D

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 31

Extensions

Extensions of S (Extk(S)) are all k-maxfactors that are superfactors of S

Examples (Extension of [+Ant])

If S = [+Ant] and the only features available are ±Ant, ±Voi and ±Str:

Extk(S) ={[+Ant, -Str, +Voi], [+Ant, +Str, +Voi]

[+Ant, -Str, -Voi], [+Ant, +Str, -Voi]}

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 32

Extensions

Extensions of S (Extk(S)) are all k-maxfactors that are superfactors of S

Examples (Extension of [+Ant])

If S = [+Ant] and the only features available are ±Ant, ±Voi and ±Str:

Extk(S) ={[+Ant, -Str, +Voi], [+Ant, +Str, +Voi]

[+Ant, -Str, -Voi], [+Ant, +Str, -Voi]}

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 32

Learning Algorithm

S

• Bottom-up traversal

• For a given subfactor S , check whether:
• G is negative and

(∀s ′ ∈ Extk(S))[∄x ∈ D, s ′ ≤ x])

• G is positive and

(∀s ′ ∈ Extk(S))[∃x ∈ D, s ′ ≤ x])

• If either condition is met:
• Add S to G !

• Otherwise:
• Add the minimal superfactors of S

to the queue to be considered next

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 33

Learning Algorithm

S

• Bottom-up traversal

• For a given subfactor S , check whether:

• G is negative and

(∀s ′ ∈ Extk(S))[∄x ∈ D, s ′ ≤ x])

• G is positive and

(∀s ′ ∈ Extk(S))[∃x ∈ D, s ′ ≤ x])

• If either condition is met:
• Add S to G !

• Otherwise:
• Add the minimal superfactors of S

to the queue to be considered next

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 33

Learning Algorithm

S

• Bottom-up traversal

• For a given subfactor S , check whether:
• G is negative and

(∀s ′ ∈ Extk(S))[∄x ∈ D, s ′ ≤ x])

• G is positive and

(∀s ′ ∈ Extk(S))[∃x ∈ D, s ′ ≤ x])

• If either condition is met:
• Add S to G !

• Otherwise:
• Add the minimal superfactors of S

to the queue to be considered next

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 33

Learning Algorithm

S

• Bottom-up traversal

• For a given subfactor S , check whether:
• G is negative and

(∀s ′ ∈ Extk(S))[∄x ∈ D, s ′ ≤ x])

• G is positive and

(∀s ′ ∈ Extk(S))[∃x ∈ D, s ′ ≤ x])

• If either condition is met:
• Add S to G !

• Otherwise:
• Add the minimal superfactors of S

to the queue to be considered next

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 33

Learning Algorithm

S

• Bottom-up traversal

• For a given subfactor S , check whether:
• G is negative and

(∀s ′ ∈ Extk(S))[∄x ∈ D, s ′ ≤ x])

• G is positive and

(∀s ′ ∈ Extk(S))[∃x ∈ D, s ′ ≤ x])

• If either condition is met:
• Add S to G !

• Otherwise:
• Add the minimal superfactors of S

to the queue to be considered next

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 33

Learning Algorithm

S

• Bottom-up traversal

• For a given subfactor S , check whether:
• G is negative and

(∀s ′ ∈ Extk(S))[∄x ∈ D, s ′ ≤ x])

• G is positive and

(∀s ′ ∈ Extk(S))[∃x ∈ D, s ′ ≤ x])

• If either condition is met:
• Add S to G !

• Otherwise:
• Add the minimal superfactors of S

to the queue to be considered next

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 33

Learning Guarantees

Fix Σ, model M, positive integer k, and polarity p. For any language
L ∈ L p(M, k) and for any finite sample D ⊆ L, return a grammar Gp

such that:

1 Gp is consistent, that is, D ⊆ L(Gp).

2 L(Gp) is a smallest language in L p(M, k) which covers D, so that
for all L ∈ L p(M, k) where D ⊆ L, we have L(Gp) ⊆ L.

3 Gp includes R-structures S that are restrictions of R-structures S ′ in
other grammars G ′ that also satisfy (1) and (2). That is, for all G ′

satisfying (1) and (2) and for all S ′ ∈ G ′, there exists some S ∈ Gp

such that S ⊑ S ′.

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 34

Learning Guarantees

Fix Σ, model M, positive integer k, and polarity p. For any language
L ∈ L p(M, k) and for any finite sample D ⊆ L, return a grammar Gp

such that:

1 Gp is consistent, that is, D ⊆ L(Gp).

2 L(Gp) is a smallest language in L p(M, k) which covers D, so that
for all L ∈ L p(M, k) where D ⊆ L, we have L(Gp) ⊆ L.

3 Gp includes R-structures S that are restrictions of R-structures S ′ in
other grammars G ′ that also satisfy (1) and (2). That is, for all G ′

satisfying (1) and (2) and for all S ′ ∈ G ′, there exists some S ∈ Gp

such that S ⊑ S ′.

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 34

Learning Guarantees

Fix Σ, model M, positive integer k, and polarity p. For any language
L ∈ L p(M, k) and for any finite sample D ⊆ L, return a grammar Gp

such that:

1 Gp is consistent, that is, D ⊆ L(Gp).

2 L(Gp) is a smallest language in L p(M, k) which covers D, so that
for all L ∈ L p(M, k) where D ⊆ L, we have L(Gp) ⊆ L.

3 Gp includes R-structures S that are restrictions of R-structures S ′ in
other grammars G ′ that also satisfy (1) and (2). That is, for all G ′

satisfying (1) and (2) and for all S ′ ∈ G ′, there exists some S ∈ Gp

such that S ⊑ S ′.

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 34

Learning Guarantees

Fix Σ, model M, positive integer k, and polarity p. For any language
L ∈ L p(M, k) and for any finite sample D ⊆ L, return a grammar Gp

such that:

1 Gp is consistent, that is, D ⊆ L(Gp).

2 L(Gp) is a smallest language in L p(M, k) which covers D, so that
for all L ∈ L p(M, k) where D ⊆ L, we have L(Gp) ⊆ L.

3 Gp includes R-structures S that are restrictions of R-structures S ′ in
other grammars G ′ that also satisfy (1) and (2). That is, for all G ′

satisfying (1) and (2) and for all S ′ ∈ G ′, there exists some S ∈ Gp

such that S ⊑ S ′.

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 34

Table of Contents

1 Preliminaries

2 Subfactors and Maxfactors

3 Grammars and Their Languages

4 The Learning Algorithm

5 Example: Samala Sibilant Harmony

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 35

Applying the Algorithm: Samala Sibilant Harmony

Examples (Samala Sibilant Harmony)

Simplifying Assumptions:

• Two features: ±Ant (relevant) and ±Voi (irrelevant)

• k = 2

• All licit subsequences are attested (cf. Heinz, 2010a)

...

[
+Ant
-Voi

] []
[+Ant][+Ant] [+Ant][-Ant] [-Ant][+Ant] [-Ant][-Ant] [+Voi][+Voi] ...

[+Ant][] [-Ant][] [][+Ant] [][-Ant] [+Voi][] [-Voi][] [][+Voi] [][-Voi]

[][]

...

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 36

Applying the Algorithm: Samala Sibilant Harmony

Examples (Samala Sibilant Harmony)

Simplifying Assumptions:
• Two features: ±Ant (relevant) and ±Voi (irrelevant)

• k = 2

• All licit subsequences are attested (cf. Heinz, 2010a)

...

[
+Ant
-Voi

] []
[+Ant][+Ant] [+Ant][-Ant] [-Ant][+Ant] [-Ant][-Ant] [+Voi][+Voi] ...

[+Ant][] [-Ant][] [][+Ant] [][-Ant] [+Voi][] [-Voi][] [][+Voi] [][-Voi]

[][]

...

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 36

Applying the Algorithm: Samala Sibilant Harmony

Examples (Samala Sibilant Harmony)

Simplifying Assumptions:
• Two features: ±Ant (relevant) and ±Voi (irrelevant)

• k = 2

• All licit subsequences are attested (cf. Heinz, 2010a)

...

[
+Ant
-Voi

] []
[+Ant][+Ant] [+Ant][-Ant] [-Ant][+Ant] [-Ant][-Ant] [+Voi][+Voi] ...

[+Ant][] [-Ant][] [][+Ant] [][-Ant] [+Voi][] [-Voi][] [][+Voi] [][-Voi]

[][]

...

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 36

Applying the Algorithm: Samala Sibilant Harmony

Examples (Samala Sibilant Harmony)

Simplifying Assumptions:
• Two features: ±Ant (relevant) and ±Voi (irrelevant)

• k = 2

• All licit subsequences are attested (cf. Heinz, 2010a)

...

[
+Ant
-Voi

] []
[+Ant][+Ant] [+Ant][-Ant] [-Ant][+Ant] [-Ant][-Ant] [+Voi][+Voi] ...

[+Ant][] [-Ant][] [][+Ant] [][-Ant] [+Voi][] [-Voi][] [][+Voi] [][-Voi]

[][]

...

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 36

Applying the Algorithm: Samala Sibilant Harmony

Examples (Samala Sibilant Harmony)

Simplifying Assumptions:
• Two features: ±Ant (relevant) and ±Voi (irrelevant)

• k = 2

• All licit subsequences are attested (cf. Heinz, 2010a)

...

[
+Ant
-Voi

] []
[+Ant][+Ant] [+Ant][-Ant] [-Ant][+Ant] [-Ant][-Ant] [+Voi][+Voi] ...

[+Ant][] [-Ant][] [][+Ant] [][-Ant] [+Voi][] [-Voi][] [][+Voi] [][-Voi]

[][]

...

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 36

Applying the Algorithm: Samala Sibilant Harmony

Examples (Samala Sibilant Harmony)

...

[
+Ant
-Voi

] []
[+Ant][+Ant] [+Ant][-Ant] [-Ant][+Ant] [-Ant][-Ant] [+Voi][+Voi] ...

[+Ant][] [-Ant][] [][+Ant] [][-Ant] [+Voi][] [-Voi][] [][+Voi] [][-Voi]

[][]

...

Negative Grammar Positive Grammar

Is there any element in Extk([][]) which
is a 2-maxfactor of some x ∈ D?

Is there any element in Extk([][]) which
is not a 2-maxfactor of some x ∈ D?

e.g. [+Voi, +Ant][+Voi, +Ant]
∈ Extk([][]), but [z...z] is licit and
attested.

e.g. [+Voi, +Ant][+Voi, -Ant]
∈ Extk([][]), but [z...Z] is illicit and
unattested.

Keep searching!

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 37

Applying the Algorithm: Samala Sibilant Harmony

Examples (Samala Sibilant Harmony)

...

[
+Ant
-Voi

] []
[+Ant][+Ant] [+Ant][-Ant] [-Ant][+Ant] [-Ant][-Ant] [+Voi][+Voi] ...

[+Ant][] [-Ant][] [][+Ant] [][-Ant] [+Voi][] [-Voi][] [][+Voi] [][-Voi]

[][]

...

Negative Grammar Positive Grammar
Is there any element in Extk([][]) which
is a 2-maxfactor of some x ∈ D?

Is there any element in Extk([][]) which
is not a 2-maxfactor of some x ∈ D?

e.g. [+Voi, +Ant][+Voi, +Ant]
∈ Extk([][]), but [z...z] is licit and
attested.

e.g. [+Voi, +Ant][+Voi, -Ant]
∈ Extk([][]), but [z...Z] is illicit and
unattested.

Keep searching!

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 37

Applying the Algorithm: Samala Sibilant Harmony

Examples (Samala Sibilant Harmony)

...

[
+Ant
-Voi

] []
[+Ant][+Ant] [+Ant][-Ant] [-Ant][+Ant] [-Ant][-Ant] [+Voi][+Voi] ...

[+Ant][] [-Ant][] [][+Ant] [][-Ant] [+Voi][] [-Voi][] [][+Voi] [][-Voi]

[][]

...

Negative Grammar Positive Grammar
Is there any element in Extk([][]) which
is a 2-maxfactor of some x ∈ D?

Is there any element in Extk([][]) which
is not a 2-maxfactor of some x ∈ D?

e.g. [+Voi, +Ant][+Voi, +Ant]
∈ Extk([][]), but [z...z] is licit and
attested.

e.g. [+Voi, +Ant][+Voi, -Ant]
∈ Extk([][]), but [z...Z] is illicit and
unattested.

Keep searching!

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 37

Applying the Algorithm: Samala Sibilant Harmony

Examples (Samala Sibilant Harmony)

...

[
+Ant
-Voi

] []
[+Ant][+Ant] [+Ant][-Ant] [-Ant][+Ant] [-Ant][-Ant] [+Voi][+Voi] ...

[+Ant][] [-Ant][] [][+Ant] [][-Ant] [+Voi][] [-Voi][] [][+Voi] [][-Voi]

[][]

...

Negative Grammar Positive Grammar
Is there any element in Extk([][]) which
is a 2-maxfactor of some x ∈ D?

Is there any element in Extk([][]) which
is not a 2-maxfactor of some x ∈ D?

e.g. [+Voi, +Ant][+Voi, +Ant]
∈ Extk([][]), but [z...z] is licit and
attested.

e.g. [+Voi, +Ant][+Voi, -Ant]
∈ Extk([][]), but [z...Z] is illicit and
unattested.

Keep searching!

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 37

Applying the Algorithm: Samala Sibilant Harmony

Examples (Samala Sibilant Harmony)

...

[
+Ant
-Voi

] []
[+Ant][+Ant] [+Ant][-Ant] [-Ant][+Ant] [-Ant][-Ant] [+Voi][+Voi] ...

[+Ant][] [-Ant][] [][+Ant] [][-Ant] [+Voi][] [-Voi][] [][+Voi] [][-Voi]

[][]

...

Negative Grammar Positive Grammar
Is there any element in Extk([][]) which
is a 2-maxfactor of some x ∈ D?

Is there any element in Extk([][]) which
is not a 2-maxfactor of some x ∈ D?

e.g. [+Voi, +Ant][+Voi, +Ant]
∈ Extk([][]), but [z...z] is licit and
attested.

e.g. [+Voi, +Ant][+Voi, -Ant]
∈ Extk([][]), but [z...Z] is illicit and
unattested.

Keep searching!

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 37

Applying the Algorithm: Samala Sibilant Harmony

Examples (Samala Sibilant Harmony)

...

[
+Ant
-Voi

] []
[+Ant][+Ant] [+Ant][-Ant] [-Ant][+Ant] [-Ant][-Ant] [+Voi][+Voi] ...

[+Ant][] [-Ant][] [][+Ant] [][-Ant] [+Voi][] [-Voi][] [][+Voi] [][-Voi]

[][]

...

Negative Grammar Positive Grammar
Is there any element in Extk([][]) which
is a 2-maxfactor of some x ∈ D?

Is there any element in Extk([][]) which
is not a 2-maxfactor of some x ∈ D?

e.g. [+Voi, +Ant][+Voi, +Ant]
∈ Extk([][]), but [z...z] is licit and
attested.

e.g. [+Voi, +Ant][+Voi, -Ant]
∈ Extk([][]), but [z...Z] is illicit and
unattested.

Keep searching!
Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 37

Applying the Algorithm: Samala Sibilant Harmony

Examples (Samala Sibilant Harmony)

...

[
+Ant
-Voi

] []
[+Ant][+Ant] [+Ant][-Ant] [-Ant][+Ant] [-Ant][-Ant] [+Voi][+Voi] ...

[+Ant][] [-Ant][] [][+Ant] [][-Ant] [+Voi][] [-Voi][] [][+Voi] [][-Voi]

[][]

...

• Extract the least superfactors of [][] and consider each of them

• Still not specified enough:
• Any subfactor with ±Ant specified in one position has licit and illicit

maxfactors in its extension
[+Ant][]⊑ [+Ant][+Ant] but [+Ant][]⊑ [+Ant][-Ant]

• ±Voi has no bearing on licitness

Keep searching!

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 38

Applying the Algorithm: Samala Sibilant Harmony

Examples (Samala Sibilant Harmony)

...

[
+Ant
-Voi

] []
[+Ant][+Ant] [+Ant][-Ant] [-Ant][+Ant] [-Ant][-Ant] [+Voi][+Voi] ...

[+Ant][] [-Ant][] [][+Ant] [][-Ant] [+Voi][] [-Voi][] [][+Voi] [][-Voi]

[][]

...

• Extract the least superfactors of [][] and consider each of them
• Still not specified enough:

• Any subfactor with ±Ant specified in one position has licit and illicit
maxfactors in its extension
[+Ant][]⊑ [+Ant][+Ant] but [+Ant][]⊑ [+Ant][-Ant]

• ±Voi has no bearing on licitness

Keep searching!

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 38

Applying the Algorithm: Samala Sibilant Harmony

Examples (Samala Sibilant Harmony)

...

[
+Ant
-Voi

] []
[+Ant][+Ant] [+Ant][-Ant] [-Ant][+Ant] [-Ant][-Ant] [+Voi][+Voi] ...

[+Ant][] [-Ant][] [][+Ant] [][-Ant] [+Voi][] [-Voi][] [][+Voi] [][-Voi]

[][]

...

• Extract the least superfactors of [][] and consider each of them
• Still not specified enough:

• Any subfactor with ±Ant specified in one position has licit and illicit
maxfactors in its extension

[+Ant][]⊑ [+Ant][+Ant] but [+Ant][]⊑ [+Ant][-Ant]

• ±Voi has no bearing on licitness

Keep searching!

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 38

Applying the Algorithm: Samala Sibilant Harmony

Examples (Samala Sibilant Harmony)

...

[
+Ant
-Voi

] []
[+Ant][+Ant] [+Ant][-Ant] [-Ant][+Ant] [-Ant][-Ant] [+Voi][+Voi] ...

[+Ant][] [-Ant][] [][+Ant] [][-Ant] [+Voi][] [-Voi][] [][+Voi] [][-Voi]

[][]

...

• Extract the least superfactors of [][] and consider each of them
• Still not specified enough:

• Any subfactor with ±Ant specified in one position has licit and illicit
maxfactors in its extension
[+Ant][]⊑ [+Ant][+Ant] but [+Ant][]⊑ [+Ant][-Ant]

• ±Voi has no bearing on licitness

Keep searching!

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 38

Applying the Algorithm: Samala Sibilant Harmony

Examples (Samala Sibilant Harmony)

...

[
+Ant
-Voi

] []
[+Ant][+Ant] [+Ant][-Ant] [-Ant][+Ant] [-Ant][-Ant] [+Voi][+Voi] ...

[+Ant][] [-Ant][] [][+Ant] [][-Ant] [+Voi][] [-Voi][] [][+Voi] [][-Voi]

[][]

...

• Extract the least superfactors of [][] and consider each of them
• Still not specified enough:

• Any subfactor with ±Ant specified in one position has licit and illicit
maxfactors in its extension
[+Ant][]⊑ [+Ant][+Ant] but [+Ant][]⊑ [+Ant][-Ant]

• ±Voi has no bearing on licitness

Keep searching!
Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 38

Applying the Algorithm: Samala Sibilant Harmony

Examples (Samala Sibilant Harmony)

Keep searching!

...

[
+Ant
-Voi

] []
[+Ant][+Ant] [+Ant][-Ant] [-Ant][+Ant] [-Ant][-Ant] [+Voi][+Voi] ...

[+Ant][] [-Ant][] [][+Ant] [][-Ant] [+Voi][] [-Voi][] [][+Voi] [][-Voi]

[][]

...

Negative Grammar Positive Grammar

Is there any element in
Extk([+Ant][-Ant]) which is a
2-maxfactor of some x ∈ D? No!

Is there any element in
Extk([+Ant][+Ant]) which is not a
2-maxfactor of some x ∈ D? No!

[+Ant][-Ant] is added to G− [+Ant][+Ant] is added to G+

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 39

Applying the Algorithm: Samala Sibilant Harmony

Examples (Samala Sibilant Harmony)

Keep searching!

...

[
+Ant
-Voi

] []
[+Ant][+Ant] [+Ant][-Ant] [-Ant][+Ant] [-Ant][-Ant] [+Voi][+Voi] ...

[+Ant][] [-Ant][] [][+Ant] [][-Ant] [+Voi][] [-Voi][] [][+Voi] [][-Voi]

[][]

...

Negative Grammar Positive Grammar
Is there any element in
Extk([+Ant][-Ant]) which is a
2-maxfactor of some x ∈ D? No!

Is there any element in
Extk([+Ant][+Ant]) which is not a
2-maxfactor of some x ∈ D? No!

[+Ant][-Ant] is added to G− [+Ant][+Ant] is added to G+

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 39

Applying the Algorithm: Samala Sibilant Harmony

Examples (Samala Sibilant Harmony)

Keep searching!

...

[
+Ant
-Voi

] []
[+Ant][+Ant] [+Ant][-Ant] [-Ant][+Ant] [-Ant][-Ant] [+Voi][+Voi] ...

[+Ant][] [-Ant][] [][+Ant] [][-Ant] [+Voi][] [-Voi][] [][+Voi] [][-Voi]

[][]

...

Negative Grammar Positive Grammar
Is there any element in
Extk([+Ant][-Ant]) which is a
2-maxfactor of some x ∈ D? No!

Is there any element in
Extk([+Ant][+Ant]) which is not a
2-maxfactor of some x ∈ D? No!

[+Ant][-Ant] is added to G− [+Ant][+Ant] is added to G+

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 39

Applying the Algorithm: Samala Sibilant Harmony

Examples (Samala Sibilant Harmony)

Keep searching!

...

[
+Ant
-Voi

] []
[+Ant][+Ant] [+Ant][-Ant] [-Ant][+Ant] [-Ant][-Ant] [+Voi][+Voi] ...

[+Ant][] [-Ant][] [][+Ant] [][-Ant] [+Voi][] [-Voi][] [][+Voi] [][-Voi]

[][]

...

Negative Grammar Positive Grammar
Is there any element in
Extk([+Ant][-Ant]) which is a
2-maxfactor of some x ∈ D? No!

Is there any element in
Extk([+Ant][+Ant]) which is not a
2-maxfactor of some x ∈ D? No!

[+Ant][-Ant] is added to G− [+Ant][+Ant] is added to G+

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 39

Applying the Algorithm: Samala Sibilant Harmony

Examples (Samala Sibilant Harmony)

...

[
+Ant
-Voi

] []
[+Ant][+Ant] [+Ant][-Ant] [-Ant][+Ant] [-Ant][-Ant] [+Voi][+Voi] ...

[+Ant][] [-Ant][] [][+Ant] [][-Ant] [+Voi][] [-Voi][] [][+Voi] [][-Voi]

[][]

...

Negative Grammar
We may later reach [+Ant][-Ant,
+Voi] but we won’t consider it.

[+Ant][-Ant] being banned entails
[+Ant][-Ant, +Voi] being banned

Positive Grammar
We may later reach [+Ant][+Ant,
+Voi] but we won’t consider it.

[+Ant][+Ant] being allowed entails
[+Ant][+Ant, +Voi] being allowed

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 40

Summary & Discussion

• If we fix the size k of subfactors in the grammar, the algorithm of
Chandlee et al. (2019) can be adapted to learn positive and negative
grammars in a unified way

• Enriched representations of feature-based string models allow us to
provably find the most general subfactors

• Implications of grammar polarity:
• As G+ grows, L(G+) grows
• As G− grows, L(G−) shrinks
• Initially, G+ allows nothing, while G− allows everything

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 41

Summary & Discussion

• If we fix the size k of subfactors in the grammar, the algorithm of
Chandlee et al. (2019) can be adapted to learn positive and negative
grammars in a unified way

• Enriched representations of feature-based string models allow us to
provably find the most general subfactors

• Implications of grammar polarity:
• As G+ grows, L(G+) grows
• As G− grows, L(G−) shrinks
• Initially, G+ allows nothing, while G− allows everything

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 41

Summary & Discussion

• If we fix the size k of subfactors in the grammar, the algorithm of
Chandlee et al. (2019) can be adapted to learn positive and negative
grammars in a unified way

• Enriched representations of feature-based string models allow us to
provably find the most general subfactors

• Implications of grammar polarity:

• As G+ grows, L(G+) grows
• As G− grows, L(G−) shrinks
• Initially, G+ allows nothing, while G− allows everything

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 41

Summary & Discussion

• If we fix the size k of subfactors in the grammar, the algorithm of
Chandlee et al. (2019) can be adapted to learn positive and negative
grammars in a unified way

• Enriched representations of feature-based string models allow us to
provably find the most general subfactors

• Implications of grammar polarity:
• As G+ grows, L(G+) grows

• As G− grows, L(G−) shrinks
• Initially, G+ allows nothing, while G− allows everything

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 41

Summary & Discussion

• If we fix the size k of subfactors in the grammar, the algorithm of
Chandlee et al. (2019) can be adapted to learn positive and negative
grammars in a unified way

• Enriched representations of feature-based string models allow us to
provably find the most general subfactors

• Implications of grammar polarity:
• As G+ grows, L(G+) grows
• As G− grows, L(G−) shrinks

• Initially, G+ allows nothing, while G− allows everything

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 41

Summary & Discussion

• If we fix the size k of subfactors in the grammar, the algorithm of
Chandlee et al. (2019) can be adapted to learn positive and negative
grammars in a unified way

• Enriched representations of feature-based string models allow us to
provably find the most general subfactors

• Implications of grammar polarity:
• As G+ grows, L(G+) grows
• As G− grows, L(G−) shrinks
• Initially, G+ allows nothing, while G− allows everything

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 41

Future Work

• Implementing the generalized algorithm and applying it to corpus
data

• Approaches to dealing with noise and sparsity in the data

• Applying the algorithm to learning non-sequential representations

• Learning mixed grammars containing both banned and allowed
subfactors

• Comparison of learning trajectories of positive & negative
grammars

• Within a single search of the hypothesis space
• When applied to incrementally larger data sets as a proxy for

incremental learning

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 42

Future Work

• Implementing the generalized algorithm and applying it to corpus
data

• Approaches to dealing with noise and sparsity in the data

• Applying the algorithm to learning non-sequential representations

• Learning mixed grammars containing both banned and allowed
subfactors

• Comparison of learning trajectories of positive & negative
grammars

• Within a single search of the hypothesis space
• When applied to incrementally larger data sets as a proxy for

incremental learning

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 42

Future Work

• Implementing the generalized algorithm and applying it to corpus
data

• Approaches to dealing with noise and sparsity in the data

• Applying the algorithm to learning non-sequential representations

• Learning mixed grammars containing both banned and allowed
subfactors

• Comparison of learning trajectories of positive & negative
grammars

• Within a single search of the hypothesis space
• When applied to incrementally larger data sets as a proxy for

incremental learning

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 42

Future Work

• Implementing the generalized algorithm and applying it to corpus
data

• Approaches to dealing with noise and sparsity in the data

• Applying the algorithm to learning non-sequential representations

• Learning mixed grammars containing both banned and allowed
subfactors

• Comparison of learning trajectories of positive & negative
grammars

• Within a single search of the hypothesis space
• When applied to incrementally larger data sets as a proxy for

incremental learning

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 42

Future Work

• Implementing the generalized algorithm and applying it to corpus
data

• Approaches to dealing with noise and sparsity in the data

• Applying the algorithm to learning non-sequential representations

• Learning mixed grammars containing both banned and allowed
subfactors

• Comparison of learning trajectories of positive & negative
grammars

• Within a single search of the hypothesis space
• When applied to incrementally larger data sets as a proxy for

incremental learning

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 42

Future Work

• Implementing the generalized algorithm and applying it to corpus
data

• Approaches to dealing with noise and sparsity in the data

• Applying the algorithm to learning non-sequential representations

• Learning mixed grammars containing both banned and allowed
subfactors

• Comparison of learning trajectories of positive & negative
grammars

• Within a single search of the hypothesis space

• When applied to incrementally larger data sets as a proxy for
incremental learning

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 42

Future Work

• Implementing the generalized algorithm and applying it to corpus
data

• Approaches to dealing with noise and sparsity in the data

• Applying the algorithm to learning non-sequential representations

• Learning mixed grammars containing both banned and allowed
subfactors

• Comparison of learning trajectories of positive & negative
grammars

• Within a single search of the hypothesis space
• When applied to incrementally larger data sets as a proxy for

incremental learning

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 42

Thank you!

I am grateful to Jeff Heinz, Thomas Graf, Jon Rawski, Logan Swanson,
and the SCiL reviewers for discussion.

This work was supported by the Institute for Advanced Computational
Science Graduate Research Fellowship and the National Science
Foundation Graduate Research Fellowship Program.

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 43

References I

Caleb Belth. 2023. Towards an Algorithmic Account of Phonological Rules and
Representations. Ph.D. thesis, University of Michigan.

Caleb Belth, Sarah Payne, Deniz Beser, Jordan Kodner, and Charles Yang. 2021. The
greedy and recursive search for morphological productivity. Proceedings of the 43rd
annual meeting of the Cognitive Science Society, 43:2869–2875.

J Richard Büchi. 1960. Weak second-order arithmetic and finite automata.
Mathematical Logic Quarterly, 6(1-6).

Jane Chandlee, Remi Eyraud, Jeffrey Heinz, Adam Jardine, and Jonathan Rawski. 2019.
Learning with partially ordered representations. In Proceedings of the 16th Meeting
on the Mathematics of Language, pages 91–101, Toronto, Canada. Association for
Computational Linguistics.

Gunnar Ólafur Hansson. 2010. Consonant harmony: Long-distance interactions in
phonology, volume 145. University of California Press.

Jeffrey Heinz. 2010a. Learning long-distance phonotactics. Linguistic Inquiry,
41(4):623–661.

Jeffrey Heinz. 2010b. String extension learning. In Proceedings of the 48th Annual
Meeting of the Association for Computational Linguistics, pages 897–906, Uppsala,
Sweden. Association for Computational Linguistics.

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 44

https://doi.org/10.18653/v1/W19-5708
https://aclanthology.org/P10-1092

References II

Jeffrey Heinz, Anna Kasprzik, and Timo Kötzing. 2012. Learning in the limit with
lattice-structured hypothesis spaces. Theoretical Computer Science, 457:111–127.

Daoxin Li and Kathryn D Schuler. 2023. Acquiring recursive structures through
distributional learning. Language Acquisition, pages 1–14.

Gary F Marcus, Steven Pinker, Michael Ullman, Michelle Hollander, T John Rosen, Fei
Xu, and Harald Clahsen. 1992. Overregularization in language acquisition.
Monographs of the society for research in child development, pages i–178.

Robert McNaughton and Seymour A Papert. 1971. Counter-Free Automata (MIT
research monograph no. 65). The MIT Press.

Sarah Payne. 2023. Marginal sequences are licit but unproductive. Poster presented at
the 2023 Annual Meeting of Phonology.

James Rogers and Jeffrey Heinz. 2014. Model theoretic phonology. In Workshop slides
in the 26th European Summer School in Logic, Language and Information.

James Rogers, Jeffrey Heinz, Margaret Fero, Jeremy Hurst, Dakotah Lambert, and Sean
Wibel. 2013. Cognitive and sub-regular complexity. In Formal Grammar: 17th and
18th International Conferences, Revised Selected Papers, pages 90–108. Springer.

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 45

https://doi.org/https://doi.org/10.1016/j.tcs.2012.07.017
https://doi.org/https://doi.org/10.1016/j.tcs.2012.07.017

References III

Kristina Strother-Garcia, Jeffrey Heinz, and Hyun Jin Hwangbo. 2016. Using model
theory for grammatical inference: a case study from phonology. In Proceedings of
The 13th International Conference on Grammatical Inference, pages 66–78.

Mai H Vu, Ashkan Zehfroosh, Kristina Strother-Garcia, Michael Sebok, Jeffrey Heinz,
and Herbert G Tanner. 2018. Statistical relational learning with unconventional string
models. Frontiers in Robotics and AI, 5:76.

Charles Yang. 2016. The price of linguistic productivity: How children learn to break the
rules of language. MIT press.

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 46

Restrictions

Definition: Restriction

An R-structure A is a restriction of an R-structure B if DA ⊆ DB and for
each m-ary relation Ri in the model signature:

RA
i = {(x1, ..., xm) ∈ RB

i | x1, ..., xm ∈ DA} (1)

Intuition: identify a subset DA of the domain of B and retain only those
relations in B whose elements are wholly within DA

R-structure B

1 2 3 4

a b b a
<

<

<

<

< <

R-structure A

1 2 3

a b b
<

<

<

DA = {1, 2, 3} ⊂ DB = {1, 2, 3, 4}

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 47

Subfactor

Definition: Subfactor

An R-structure A is a subfactor of an R-structure B (notated A ⊑ B) if
there exists a restriction B ′ of B and a bijection h such that for all Ri ∈ R,
if Ri (x1, ..., xm) holds in A, then Ri (h(x1), ..., h(xm)) holds in B ′.

Intuition: A is a subfactor of B if there is a mapping between DA and
some subset of DB and all relations that hold in A also hold over the
corresponding elements in B

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 48

Maxfactor

Definition: Maxfactor

An R-structure A is a maxfactor of an R-structure B (notated A ≤ B) iff
A ⊑ B and for each m-ary relation Ri , whenever Ri (x1, ..., xm) holds in B,
Ri (h

−1(x1), ..., h
−1(xm)) holds in A.

Intuition: A is a maxfactor of B if A ⊑ B and and all relations that hold
in B also hold over the corresponding elements in A

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 49

Extensions

Extensions of a Subfactor

The extensions of a subfactor S are defined as follows:

Extk(S) ={A ∈ Sfack(M,Σ∗) |
S ⊑ A ∧ (∄A′)[|A′| = k ∧ A ⊑ A′]}

(2)

Intuition: extensions of S are all k-maxfactors that are superfactors of S .

Examples (Extension of [+Ant])

If S = [+Ant] and the only features available are ±Ant, ±Voi and
±Str:

Extk(S) ={[+Ant, -Str, +Voi], [+Ant, +Str, +Voi]

[+Ant, -Str, -Voi], [+Ant, +Str, -Voi]}

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 50

Next Superfactor

Next Superfactor

We extract the more specific superfactors of S by calling NextSupFact(s)
where NextSupFact() is defined as follows:

NextSupFact(S) ={A ∈ Sfack(M,Σ∗) |
S ⊑ A ∧ (∄A′)[S ⊑ A′ ⊑ A]}

(3)

Intuition: NextSupFact() returns the least superfactors for S .

Examples (Next superfactors of [+Ant])

If S = [+Ant] and the only features available are ±Ant, ±Voi and
±Str:

NextSupFact(S) ={[+Ant, -Str], [+Ant, +Str]

[+Ant, -Voi], [+Ant, +Voi]}

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 51

Conventional vs. Unconventional String Models

Conventional String Models
• Mutually-exclusive unary
relations label each domain
element with the single property
of being some σ ∈ Σ

• Segments in phonological
applications

1 2

s S

<

Unconventional String Models
• Non-exclusive unary relations
allow distinct alphabetic
symbols to share properties

• Features in phonological
applications

1 2

+Str
+Ant
-Voi

+Str
-Ant
-Voi

<

(Strother-Garcia et al., 2016; Vu et al., 2018)

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 52

Connectedness

Connectedness

An R-structure S = ⟨D;R1,R2, ...,Rn⟩ is connected iff
(∀x , y ∈ D)[(x , y) ∈ C ∗], where C ∗ is defined as the symmetric transitive
closure of:

C ={(x , y) ∈ D × D |
∃i ∈ {1...n}, ∃(x1...xm) ∈ Ri

∃s, t ∈ {1...m}, x = xs , y = xt}

Intuition: domain elements x and y of S belong to C if they belong to
some non-unary relation Ri in S

Examples (Disconnected R-Structure)

1 2 3 4

a b b a
� �

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 53

The Cost of Interdefinability

For symbolic models, negative & positive grammars are straightforwardly
interdefinable:

G+ = Σk \ G− G− = Σk \ G+

Two complications for feature-based models:

Number of k-Subfactors
• A model with n binary features

defines s ≤ 2n segments

• Segment-based model: no more
than (s)k ≤ (2n)k k-factors

• Under a feature-based model:
(3n)k possible k-subfactors since
each feature can be positive,
negative, or unspecified

Conversion Process
• For symbolic models, need to
simply check whether some
k-factor f ∈ Σk is in G−

if [s...S] ∈ G− then [s...S] ̸∈ G+

• For feature-based models, a
k-subfactor f should not be
added to G+ if f ∈ G−, but also
if (∃g ∈ G−)[f ⊑ g ∨ g ⊑ f].

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 54

Some Lemmas

Lemma 1: Maxfactor-Subfactor Containment

Let k be some positive integer and let M be some model of Σ∗. For any
w ∈ Σ∗ and for any F ∈ Sfack(M,w), we have that:

[∃G ∈ Mfack(M,w)](F ⊑ G)

Lemma 2: Union of Subfactors of Maxfactors

Let k be some positive integer and let M be some model of Σ∗. For any
w ∈ Σ∗, we have that:⋃

S∈Mfack (M,w)

Sfack(S) = Sfack(M,w)

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 55

	Preliminaries
	Subfactors and Maxfactors
	Grammars and Their Languages
	The Learning Algorithm
	Example: Samala Sibilant Harmony
	Extra Slides
	References

