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Overview

• Previous work: learning formal languages with symbolic
representations (Heinz, 2010b; Heinz et al., 2012, i.a.)

• Grammars as collections of forbidden or allowed combinations

1 2

s S

<

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 2



Overview

• Previous work: learning formal languages with symbolic
representations (Heinz, 2010b; Heinz et al., 2012, i.a.)

• Grammars as collections of forbidden or allowed combinations

1 2

s S

<

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 2



Overview

• Previous work: learning formal languages with symbolic
representations (Heinz, 2010b; Heinz et al., 2012, i.a.)

• Grammars as collections of forbidden or allowed combinations

• Chandlee et al. (2019): learn with feature-based representations

• Grammars as collections of forbidden combinations

1 2

+Str
+Ant
-Voi

+Str
-Ant
-Voi

<

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 3



Overview

• Previous work: learning formal languages with symbolic
representations (Heinz, 2010b; Heinz et al., 2012, i.a.)

• Grammars as collections of forbidden or allowed combinations

• Chandlee et al. (2019): learn with feature-based representations
• Grammars as collections of forbidden combinations

1 2

+Str
+Ant
-Voi

+Str
-Ant
-Voi

<

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 3



Overview

• Previous work: learning formal languages with symbolic
representations (Heinz, 2010b; Heinz et al., 2012, i.a.)

• Grammars as collections of forbidden or allowed combinations

• Chandlee et al. (2019): learn with feature-based representations
• Grammars as collections of forbidden combinations
• What about collections of allowed combinations?

• This talk: algorithm for learning grammars as collections of allowed
or forbidden feature-based combinations in a unified way

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 4



Overview

• Previous work: learning formal languages with symbolic
representations (Heinz, 2010b; Heinz et al., 2012, i.a.)

• Grammars as collections of forbidden or allowed combinations

• Chandlee et al. (2019): learn with feature-based representations
• Grammars as collections of forbidden combinations
• What about collections of allowed combinations?

• This talk: algorithm for learning grammars as collections of allowed
or forbidden feature-based combinations in a unified way

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 4



Example: Samala Sibilant Harmony

Examples (Samala Sibilant Harmony)

• Subsequences such as [s...s] that agree in ±Anterior are allowed

• Subsequences such as [s...S] which disagree are banned

! [hasxintilawas] % [hasxintilawaS]

(Hansson, 2010)

Negative Grammar (G−)

[+Ant][-Ant] ∈ G− ⇒ sSt ̸∈ L(G−)

Since [+Ant][-Ant] covers [sS]

Positive Grammar (G+)

[+Str][-Str],[+Ant][-Ant] ∈ G+

⇒ sSt ∈ L(G+)

Since [+Ant][-Ant] covers [sS] and
[+Str][-Str] covers [St]
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Why Positive Grammars?

Psycholinguistic Motivation Computational Motivation

• Child may construct positive
phonological and phonotactic
grammars (Belth, 2023; Payne,
2023, i.a.)

• Evidence for positive syntactic
and morphological grammars
(Marcus et al., 1992; Yang, 2016;

Belth et al., 2021; Li and Schuler,

2023, i.a.)

• Post-hoc conversion between
positive & negative grammars is
straightforward for symbolic
models (Heinz, 2010b)

• Post-hoc conversion is
exponentially more costly for
models that use features

• Grammar polarity has
implications for the learning
trajectory

By fixing k — the size of the learned substructures — we can
straightforwardly adapt the algorithm of Chandlee et al. (2019) to
learn the most general positive and negative grammars over

feature-based models
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Finite Model Theory

Model Signature: a set of relations R = {R1,R2, ...,Rn}
• Each Ri is an mi -ary relation

R-Structure: a tuple of elements S = ⟨D;R1,R2, ...,Rn⟩
• D, the domain, is a finite set of elements

• Each Ri is a subset of Dmi

Size |S | of an R-structure = cardinality of its domain

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 9



Finite Model Theory

Model Signature: a set of relations R = {R1,R2, ...,Rn}
• Each Ri is an mi -ary relation

R-Structure: a tuple of elements S = ⟨D;R1,R2, ...,Rn⟩
• D, the domain, is a finite set of elements

• Each Ri is a subset of Dmi

Size |S | of an R-structure = cardinality of its domain

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 9



Finite Model Theory

Model Signature: a set of relations R = {R1,R2, ...,Rn}
• Each Ri is an mi -ary relation

R-Structure: a tuple of elements S = ⟨D;R1,R2, ...,Rn⟩
• D, the domain, is a finite set of elements

• Each Ri is a subset of Dmi

Size |S | of an R-structure = cardinality of its domain

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 9



Precedence and Successor Models

Precedence Model: M<(w) := ⟨Dw ;<, [Rw
σ ]σ∈Σ⟩

• Dw = {1, ..., |w |} is the domain of positions in w

• <:= {(i , j) ∈ Dw × Dw | i < j} is the general precedence relation

1 2 3 4

+Ant +Ant -Ant -Ant

<

<

<

<

< <

(Büchi, 1960; McNaughton and Papert, 1971; Rogers et al., 2013)
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Precedence and Successor Models

Successor Model: M�(w) := ⟨Dw ;�, [Rw
σ ]σ∈Σ⟩

• Dw = {1, ..., |w |} is the domain of positions in w

• � := {(i , i + 1) ∈ Dw × Dw} is the successor relation

1 2 3 4

+Ant +Ant -Ant -Ant

� � �

(Büchi, 1960; McNaughton and Papert, 1971; Rogers et al., 2013)
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Subfactors & Maxfactors

An R-structure A is a subfactor of an R-structure B (notated A ⊑ B) if:

1 There is a mapping between DA and some subset of DB

2 All relations that hold in A also hold over the corresponding elements
in B

An R-structure A is a maxfactor of an R-structure B (notated A ≤ B) if
1 and 2 are satisfied and:

3 All relations that hold in B also hold over the corresponding elements
in A

Subfactor:
Unidirectional

Maxfactor:
Bidirectional
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Subfactors vs. Maxfactors

Examples (Samala Sibilant Harmony)

1 2 3

+str
+ant

+str
-ant

-str
+ant

< <

<

Subfactor:
Unidirectional

Maxfactor:
Bidirectional
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k-Subfactors and k-Maxfactors

Definition: k-Subfactors

If A ⊑ B and |A| = k, then A is a
k-subfactor of B

Definition: k-Maxfactors

If A ≤ B and |A| = k , then A is
k-maxfactor of B

Let the set of k-subfactors of an
R-structure B be given by:

Sfack(B) := {A | A ⊑ B, |A| = k}

Let the set of k-maxfactors of B
be given by:

Mfack(B) := {A | A ≤ B, |A| = k}
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Positive vs. Negative Grammars

Grammar G = finite set of k-subfactors
Language defined by G depends on its interpretation:

Negative Grammar (G−)

Elements of G− are forbidden,
and strings in L(G−) contain
no forbidden subfactors

Positive Grammar (G+)

Elements of G+ are
permissible, and strings in
L(G+) are those which are
tiled by these elements
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Positive Grammars: Tiling

Figure courtesy of Rogers and Heinz (2014)
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Languages of Positive vs. Negative Grammars

Negative Grammar

The language L(G−) of G− is given
by:

L(G−) ={w ∈ Σ∗ | (∀S ∈ Mfack(M,w))

[Sfack(S) ∩ G− = ∅]}

or equivalently by:

L(G−) ={w ∈ Σ∗ | (∄S ∈ Mfack(M,w))

[Sfack(S) ∩ G− ̸= ∅]}

Positive Grammar

The language L(G+) of G+ is given
by:

L(G+) ={w ∈ Σ∗ | (∀S ∈ Mfack(M,w))

[Sfack(S) ∩ G+ ̸= ∅]}

or equivalently by:

L(G+) ={w ∈ Σ∗ | (∄S ∈ Mfack(M,w))

[Sfack(S) ∩ G+ = ∅]}
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Positive Grammar

The language L(G+) of G+ is given
by:

L(G+) ={w ∈ Σ∗ | (∀S ∈ Mfack(M,w))

[Sfack(S) ∩ G+ ̸= ∅]}

or equivalently by:

L(G+) ={w ∈ Σ∗ | (∄S ∈ Mfack(M,w))

[Sfack(S) ∩ G+= ∅]}

Positive Grammar Negative Grammar

Negative Grammar Positive Grammar

∈ G ̸∈ G

∀

∃
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Previous Work

Crucial insight of Chandlee et al. (2019): grammatical entailment

[]

[+Str][+Ant] [+Voi] ...

[+Ant, +Str] [+Str][]

[+Ant, +Str][] [+Str][+Ant, +Str] [+Str][ +Str]

% % %
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Chandlee et al. (2019) Algorithm

S
• Bottom-up traversal

• For a given subfactor S , check whether
S ⊑ x for any x in the data D

• If not, posit a constraint: S ∈ G−

• If so, cannot posit a constraint
Add the least superfactors of S to
the queue to be considered next
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Least Superfactors

Least Superfactors of S (NextSupFact(S)) are the superfactors of S
that differ minimally from S

Examples (Next superfactors of [+Ant])

If S = [+Ant] and the only features available are ±Ant, ±Voi and ±Str:

NextSupFact(S) ={[+Ant, -Str], [+Ant, +Str]

[+Ant, -Voi], [+Ant, +Voi]}
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Intuition

S

For a negative grammar:

• Add S to G− if S ̸⊑ x for any x ∈ D

• Equivalent: Given the set of all
maxfactors that are superfactors of S ,
none are attested in D

Positive Grammar Negative Grammar

Negative Grammar Positive Grammar

∈ D ̸∈ D

∀

∃

For a positive grammar:

• Given the set of all maxfactors that are
superfactors of S , all are attested in D
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Extensions

Extensions of S (Extk(S)) are all k-maxfactors that are superfactors of S

Examples (Extension of [+Ant])

If S = [+Ant] and the only features available are ±Ant, ±Voi and ±Str:

Extk(S) ={[+Ant, -Str, +Voi], [+Ant, +Str, +Voi]

[+Ant, -Str, -Voi], [+Ant, +Str, -Voi]}
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Learning Algorithm

S

• Bottom-up traversal

• For a given subfactor S , check whether:
• G is negative and

(∀s ′ ∈ Extk(S))[∄x ∈ D, s ′ ≤ x ])

• G is positive and

(∀s ′ ∈ Extk(S))[∃x ∈ D, s ′ ≤ x ])

• If either condition is met:
• Add S to G !

• Otherwise:
• Add the minimal superfactors of S

to the queue to be considered next
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Learning Guarantees

Fix Σ, model M, positive integer k, and polarity p. For any language
L ∈ L p(M, k) and for any finite sample D ⊆ L, return a grammar Gp

such that:

1 Gp is consistent, that is, D ⊆ L(Gp).

2 L(Gp) is a smallest language in L p(M, k) which covers D, so that
for all L ∈ L p(M, k) where D ⊆ L, we have L(Gp) ⊆ L.

3 Gp includes R-structures S that are restrictions of R-structures S ′ in
other grammars G ′ that also satisfy (1) and (2). That is, for all G ′

satisfying (1) and (2) and for all S ′ ∈ G ′, there exists some S ∈ Gp

such that S ⊑ S ′.
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Applying the Algorithm: Samala Sibilant Harmony

Examples (Samala Sibilant Harmony)

Simplifying Assumptions:

• Two features: ±Ant (relevant) and ±Voi (irrelevant)

• k = 2

• All licit subsequences are attested (cf. Heinz, 2010a)

...

[
+Ant
-Voi

] [ ]
[+Ant][+Ant] [+Ant][-Ant] [-Ant][+Ant] [-Ant][-Ant] [+Voi][+Voi] ...

[+Ant][] [-Ant][] [][+Ant] [][-Ant] [+Voi][] [-Voi][] [][+Voi] [][-Voi]

[][]

... ... ... ... ... ... ... ...
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Applying the Algorithm: Samala Sibilant Harmony

Examples (Samala Sibilant Harmony)

...

[
+Ant
-Voi

] [ ]
[+Ant][+Ant] [+Ant][-Ant] [-Ant][+Ant] [-Ant][-Ant] [+Voi][+Voi] ...

[+Ant][] [-Ant][] [][+Ant] [][-Ant] [+Voi][] [-Voi][] [][+Voi] [][-Voi]

[][]

... ... ... ... ... ... ... ...

Negative Grammar Positive Grammar

Is there any element in Extk([][]) which
is a 2-maxfactor of some x ∈ D?

Is there any element in Extk([][]) which
is not a 2-maxfactor of some x ∈ D?

e.g. [+Voi, +Ant][+Voi, +Ant]
∈ Extk([][]), but [z...z] is licit and
attested.

e.g. [+Voi, +Ant][+Voi, -Ant]
∈ Extk([][]), but [z...Z] is illicit and
unattested.

Keep searching!
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Applying the Algorithm: Samala Sibilant Harmony

Examples (Samala Sibilant Harmony)

...

[
+Ant
-Voi

] [ ]
[+Ant][+Ant] [+Ant][-Ant] [-Ant][+Ant] [-Ant][-Ant] [+Voi][+Voi] ...

[+Ant][] [-Ant][] [][+Ant] [][-Ant] [+Voi][] [-Voi][] [][+Voi] [][-Voi]

[][]

... ... ... ... ... ... ... ...

• Extract the least superfactors of [][] and consider each of them

• Still not specified enough:
• Any subfactor with ±Ant specified in one position has licit and illicit

maxfactors in its extension
[+Ant][]⊑ [+Ant][+Ant] but [+Ant][]⊑ [+Ant][-Ant]

• ±Voi has no bearing on licitness

Keep searching!
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Applying the Algorithm: Samala Sibilant Harmony

Examples (Samala Sibilant Harmony)

Keep searching!

...

[
+Ant
-Voi

] [ ]
[+Ant][+Ant] [+Ant][-Ant] [-Ant][+Ant] [-Ant][-Ant] [+Voi][+Voi] ...

[+Ant][] [-Ant][] [][+Ant] [][-Ant] [+Voi][] [-Voi][] [][+Voi] [][-Voi]

[][]

... ... ... ... ... ... ... ...

Negative Grammar Positive Grammar

Is there any element in
Extk([+Ant][-Ant]) which is a
2-maxfactor of some x ∈ D? No!

Is there any element in
Extk([+Ant][+Ant]) which is not a
2-maxfactor of some x ∈ D? No!

[+Ant][-Ant] is added to G− [+Ant][+Ant] is added to G+
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Applying the Algorithm: Samala Sibilant Harmony

Examples (Samala Sibilant Harmony)

...

[
+Ant
-Voi

] [ ]
[+Ant][+Ant] [+Ant][-Ant] [-Ant][+Ant] [-Ant][-Ant] [+Voi][+Voi] ...

[+Ant][] [-Ant][] [][+Ant] [][-Ant] [+Voi][] [-Voi][] [][+Voi] [][-Voi]

[][]

... ... ... ... ... ... ... ...

Negative Grammar
We may later reach [+Ant][-Ant,
+Voi] but we won’t consider it.

[+Ant][-Ant] being banned entails
[+Ant][-Ant, +Voi] being banned

Positive Grammar
We may later reach [+Ant][+Ant,
+Voi] but we won’t consider it.

[+Ant][+Ant] being allowed entails
[+Ant][+Ant, +Voi] being allowed
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Summary & Discussion

• If we fix the size k of subfactors in the grammar, the algorithm of
Chandlee et al. (2019) can be adapted to learn positive and negative
grammars in a unified way

• Enriched representations of feature-based string models allow us to
provably find the most general subfactors

• Implications of grammar polarity:
• As G+ grows, L(G+) grows
• As G− grows, L(G−) shrinks
• Initially, G+ allows nothing, while G− allows everything
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Future Work

• Implementing the generalized algorithm and applying it to corpus
data

• Approaches to dealing with noise and sparsity in the data

• Applying the algorithm to learning non-sequential representations

• Learning mixed grammars containing both banned and allowed
subfactors

• Comparison of learning trajectories of positive & negative
grammars

• Within a single search of the hypothesis space
• When applied to incrementally larger data sets as a proxy for

incremental learning
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Thank you!

I am grateful to Jeff Heinz, Thomas Graf, Jon Rawski, Logan Swanson,
and the SCiL reviewers for discussion.
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Restrictions

Definition: Restriction

An R-structure A is a restriction of an R-structure B if DA ⊆ DB and for
each m-ary relation Ri in the model signature:

RA
i = {(x1, ..., xm) ∈ RB

i | x1, ..., xm ∈ DA} (1)

Intuition: identify a subset DA of the domain of B and retain only those
relations in B whose elements are wholly within DA

R-structure B

1 2 3 4

a b b a
<

<

<

<

< <

R-structure A

1 2 3

a b b
<

<

<

DA = {1, 2, 3} ⊂ DB = {1, 2, 3, 4}
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Subfactor

Definition: Subfactor

An R-structure A is a subfactor of an R-structure B (notated A ⊑ B) if
there exists a restriction B ′ of B and a bijection h such that for all Ri ∈ R,
if Ri (x1, ..., xm) holds in A, then Ri (h(x1), ..., h(xm)) holds in B ′.

Intuition: A is a subfactor of B if there is a mapping between DA and
some subset of DB and all relations that hold in A also hold over the
corresponding elements in B
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Maxfactor

Definition: Maxfactor

An R-structure A is a maxfactor of an R-structure B (notated A ≤ B) iff
A ⊑ B and for each m-ary relation Ri , whenever Ri (x1, ..., xm) holds in B,
Ri (h

−1(x1), ..., h
−1(xm)) holds in A.

Intuition: A is a maxfactor of B if A ⊑ B and and all relations that hold
in B also hold over the corresponding elements in A
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Extensions

Extensions of a Subfactor

The extensions of a subfactor S are defined as follows:

Extk(S) ={A ∈ Sfack(M,Σ∗) |
S ⊑ A ∧ (∄A′)[|A′| = k ∧ A ⊑ A′]}

(2)

Intuition: extensions of S are all k-maxfactors that are superfactors of S .

Examples (Extension of [+Ant])

If S = [+Ant] and the only features available are ±Ant, ±Voi and
±Str:

Extk(S) ={[+Ant, -Str, +Voi], [+Ant, +Str, +Voi]

[+Ant, -Str, -Voi], [+Ant, +Str, -Voi]}
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Next Superfactor

Next Superfactor

We extract the more specific superfactors of S by calling NextSupFact(s)
where NextSupFact() is defined as follows:

NextSupFact(S) ={A ∈ Sfack(M,Σ∗) |
S ⊑ A ∧ (∄A′)[S ⊑ A′ ⊑ A]}

(3)

Intuition: NextSupFact() returns the least superfactors for S .

Examples (Next superfactors of [+Ant])

If S = [+Ant] and the only features available are ±Ant, ±Voi and
±Str:

NextSupFact(S) ={[+Ant, -Str], [+Ant, +Str]

[+Ant, -Voi], [+Ant, +Voi]}

Payne (SBU) Learning Positive & Negative Grammars with Unconventional String Models SCiL 2024 51



Conventional vs. Unconventional String Models

Conventional String Models
• Mutually-exclusive unary
relations label each domain
element with the single property
of being some σ ∈ Σ

• Segments in phonological
applications

1 2

s S

<

Unconventional String Models
• Non-exclusive unary relations
allow distinct alphabetic
symbols to share properties

• Features in phonological
applications

1 2

+Str
+Ant
-Voi

+Str
-Ant
-Voi

<

(Strother-Garcia et al., 2016; Vu et al., 2018)
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Connectedness

Connectedness

An R-structure S = ⟨D;R1,R2, ...,Rn⟩ is connected iff
(∀x , y ∈ D)[(x , y) ∈ C ∗], where C ∗ is defined as the symmetric transitive
closure of:

C ={(x , y) ∈ D × D |
∃i ∈ {1...n}, ∃(x1...xm) ∈ Ri

∃s, t ∈ {1...m}, x = xs , y = xt}

Intuition: domain elements x and y of S belong to C if they belong to
some non-unary relation Ri in S

Examples (Disconnected R-Structure)

1 2 3 4

a b b a
� �
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The Cost of Interdefinability

For symbolic models, negative & positive grammars are straightforwardly
interdefinable:

G+ = Σk \ G− G− = Σk \ G+

Two complications for feature-based models:

Number of k-Subfactors
• A model with n binary features

defines s ≤ 2n segments

• Segment-based model: no more
than (s)k ≤ (2n)k k-factors

• Under a feature-based model:
(3n)k possible k-subfactors since
each feature can be positive,
negative, or unspecified

Conversion Process
• For symbolic models, need to
simply check whether some
k-factor f ∈ Σk is in G−

if [s...S] ∈ G− then [s...S] ̸∈ G+

• For feature-based models, a
k-subfactor f should not be
added to G+ if f ∈ G−, but also
if (∃g ∈ G−)[f ⊑ g ∨ g ⊑ f ].
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Some Lemmas

Lemma 1: Maxfactor-Subfactor Containment

Let k be some positive integer and let M be some model of Σ∗. For any
w ∈ Σ∗ and for any F ∈ Sfack(M,w), we have that:

[∃G ∈ Mfack(M,w)](F ⊑ G )

Lemma 2: Union of Subfactors of Maxfactors

Let k be some positive integer and let M be some model of Σ∗. For any
w ∈ Σ∗, we have that:⋃

S∈Mfack (M,w)

Sfack(S) = Sfack(M,w)
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