SCiL

Learning Morphological Productivity as Meaning-Form Mappings

Sarah Payne

University of Pennsylvania paynesa@sas.upenn.edu

Jordan Kodner

Stony Brook University jordan.kodner@stonybrook.edu

Charles Yang

University of Pennsylvania charles.yang@ling.upenn.edu

The Problem

- Children learn the entirety of verbal morphology from very sparse input
- They have no explicit information as to whether their language is agglutinative or fusional

Our Approach

- We collect child-directed verb forms from CHILDES for English and Spanish
- We annotate these using UniMorph tags
 - UniMorph provides person, number, tense, etc; we consider this an approximation of the child's semantic knowledge
- We apply the Tolerance Principle recursively on the data to pick out larger and smaller patterns (more on this later)

Outline

- Data + Spanish Basics
- Tolerance Principle + Model
- Results

Data

Data: Spanish and English

• Spanish: 989 inflected forms, 302 lemmas

- Sampled from FernAguado corpus by frequency
- Example:
 - tener V;IND;PRS;2;SG tienes

• English: 3,953 inflected forms, 1,285 lemmas

- Sampled from Manchester, Wells, and Belfast corpora by frequency
- Example:
 - bake V;V.PTCP;PRS baking
- Frequency is correlated with irregularity in English, but not Spanish (Fratini et al. 2014)

Spanish Basics

- 3 main classes of verbs: -ar, -ir and -er (defined by infinitive form)
 - *-ar* is largest class (62% of our data vs. 24% *-er* and 14% *-ir*)
 - Mappings often correspond to its behaviour
- Tense and person+number are often indicated separately in an agglutinative fashion
 - E.g., -ria = COND, -ra = FUT, -ba = IPFV (-ar verbs), and -s = [2; SG]
 - So -*rias* = [COND; 2; SG], -*ras* = [FUT; 2; SG], -*bas* = [IPFV; 2; SG]

Model

The Tolerance Principle (Yang, 2016)

$$e \le \theta_N = \frac{N}{\ln N}$$

N = the number of words to which are eligible to take a rule

e = the number of those words to which the rule does not apply

Example: 100 past-tense English verbs; 20 don't take -ed. 100/In100 = 21.7. 20 < 21.7 so **PST → -ed** passes the Tolerance Principle

Model Overview

- GCD application of the Tolerance Principle
- Recursive application of the Tolerance Principle
- Multi-pass application of the Tolerance Principle

Method: GCD approach

- Possible suffixes = substrings of length ≤ 5 at the end of an inflected form
 e.g., possible suffixes of *amaremos* are *-remos*, *-emos*, *-mos*, *-os*, *-s*
- **Possible features realized by each suffix** = all possible subsets of the provided feature set
 - e.g. possible features for [IND; PRS; 3; SG] could be [IND], [IND; PRS], [IND; PRS; 3], [IND; PRS; 3; SG], [PRS], [PRS;3] ...
- Use a **GCD approach:** find smallest feature-set that maps to a suffix
 - Do a pass of the TP from feature-sets to suffixes
 - For each suffix that was mapped to, find the intersection of all features that mapped to it
 - Keep adding features by frequency until a mapping from the features to suffix passes

Example: GCD approach using the Tolerance Principle

In Spanish, **-mos = [1;PL]**, which we obtain as follows:

- 1. Do a pass of the TP from feature-sets to suffixes
 - This yields mappings such as [1; PL] = -mos, [1; PL; FUT] = -ramos, [1; COND] = -riamos
 - Some of these (e.g. [1;COND]) are underspecified, others are overspecified
 - We cannot learn agglutinativity from these mappings alone

Example: GCD approach using the Tolerance Principle

- 2. For each suffix that was mapped to, find the intersection of all features that mapped to it
 - For -mos, say this suffix was mapped to by [1;PL], [IND; PRS; 1; PL], and [POS; IMP; 1]
 - The intersection of these gives [1] = -mos, which won't pass the TP

Example: GCD approach using the Tolerance Principle

- 3. Keep adding features by frequency until a mapping from the features to suffix passes
 - The second-most frequent feature is **PL**, and **[1; PL]** = -mos passes

Method: Recursive Application of the TP

- We learn the broadest mappings first
 - e.g. in Spanish, **[3; SG]** = ""
- Then we recurse on the exceptions to these broad mappings to learn narrower mappings
 - e.g. in Spanish, **[3; SG]** = **""** except **[3; SG; PFV]** = -•
 - We learn the latter mapping by recursively applying the TP to the verbs that fail to be correctly inflected by [3; SG] = ""
- We memorize verbs that remain exceptions after recursion
 - In Spanish, we learn narrow mappings such as [3; SG; PFV] = -o and stem conditioned endings such as the imperfective
 - In both cases, we can predict the rule we use based on properties of the lemma or features
 - However, we can't do the same for *ser*, so we memorize its inflected forms

Method: Multi-Pass Application of the TP

- In agglutinative languages, more frequent features are realized closer to the end of the inflected form
 - e.g. in Spanish, person & number are always realized at the end and are most common
- We consider feature categories (person, number, mood, tense, aspect) in order of decreasing frequency
- At each pass, we constrain GCD mappings to the given feature category/categories and recurse on these before moving to the next one
 - In Spanish, we learn person-number endings and their productive exceptions first.
 - This includes [3; SG] = "" and [3; SG; PFV] = -o, which is learned via recursion at this pass
- We remove the suffixes we've learned at a given pass from the inflected forms before moving on to the next pass
 - After removing Spanish person-number endings, we learn mappings such as [COND] = -ria

At each pass, constrained by feature categories:

Do a GCD pass of the Tolerance Principle

Recurse on exceptions

Memorize anything left

Results

Results: English

Broad Mappings								
Features	Defau.	Alternations	Ct.	Ex.				
First Pass								
PRS	Ø		2573	walk				
Second Pass								
3	Ø		1717	walk				
2	Ø		571	walk				
1	Ø		554	walk				
Third Pass								
PL	Ø		1454	walk				
SG	Ø		1422	walk				
Fourth Pass								
NFIN	Ø		22	walk				

Narrow Mappings								
Features	Defau.	Alternations	Ct.	Ex.				
First Pass								
PTCP, PRS	ing	$e \rightarrow ing$	643	pleasing				
3 SG PRS	S		372	walks				
Second Pass								
3 PL PST	ed	y→ied,e→ed	367	pleased				
3 SG PST	ed	y→ied	139	tried				
2 SG PST	ed	y→ied,e→ed	203	walked				
1 SG PST	ed	y \rightarrow ied,d \rightarrow t	136	built				
1 pl pst	ed	y→ied	67	cried				

Results: Spanish

Broad Mappings				ľ	Narrow Mappings					
Features	Default	Alterns.	Ct.	Ex.		Features	Default	Alterns.	Ct.	Ex.
First Pass					First Pass					
3 SG	Ø		227	ата		SBJV PRS 3 SG	е	$i \rightarrow a$	13	ame
3 PL	n		103	aman		pos imp 3 sg	е	$i \rightarrow a$	14	ame
1 PL	mos		51	amamos		IND PST 3 SG PFV	0		72	amo
2 PL	is		10	amais		SBJV PRS 3 PL	an		2	coman
PRS 1 SG	0		163	amo		pos imp 3 pl	an		2	coman
PRS 2 SG	S		129	amas		ind pst 3 pl pfv	ron		23	amaron
Second Pass				pos imp 1 pl	emos		3	amemos		
IND	Ø		651	ama		SBJV PRS 1 PL	emos		3	amemos
IMP	Ø		127	ата		pos imp 2 pl	d		2	amad
NFIN	r		146	amar		SBJV PRS 1 SG	е	$i \rightarrow a$	14	ame
COND	ria		16	amaria		IND PST 1 SG PFV	е	$i \rightarrow i$	18	ame
Third Pass			0	cond 2 sg	rias		2	amarias		
PRS	Ø		492	ama		SBJV PRS 2 SG	es	$i \rightarrow as$	33	ames
FUT	ra		20	amara		ind fut 2 sg	ras		3	amaras
Fourth Pass				IND PST 2 SG IPFV	ias		9	comias		
IPFV	ia	a→aba	65	amaba		IND PST 2 SG PFV	ste		10	amaste
						Second Pass				
						IND FUT 1 PL	re		2	amaremos

Discussion + Future Work

- Segmentation and generation
 - Our model may be extended to be competitive on computational linguistics and NLP morphological tasks
- Developmental plausibility
 - Our model learns rules in a similar order to children
 - Does it exhibit U-shaped development?
- Non-verbal morphology
 - Derivational or German nouns

Thank you!!

We'd also like to thank Bob Berwick and his lab, Spencer Caplan, Kyle Gorman, Mitch Marcus, Hongzhi Xu, and the anonymous SCiL reviewers for their feedback.