Getting the Right Stuff Wrong: Distributional Equivalence in Modeling Language Acquisition

Sarah Brogden Payne

sarah.payne@stonybrook.edu
paynesa.github.io

Rutgers Subregular Workshop 15th November 2025

Central Mystery: how do children come to be competent, fluent speakers of their native language(s) from such small, sparse input?

Central Mystery: how do children come to be competent, fluent speakers of their native language(s) from such small, sparse input?

Computational Models: are one tool to explore this question

• Propose mechanisms that may underlie acquisition

Central Mystery: how do children come to be competent, fluent speakers of their native language(s) from such small, sparse input?

Computational Models: are one tool to explore this question

• Propose mechanisms that may underlie acquisition

Another way to view this: Marr's Levels

Central Mystery: how do children come to be competent, fluent speakers of their native language(s) from such small, sparse input?

Computational Models: are one tool to explore this question

Propose mechanisms that may underlie acquisition

Another way to view this: Marr's Levels

Computational Level: what are the goals of the computation?
 Map from small, sparse input to the learned grammar

Central Mystery: how do children come to be competent, fluent speakers of their native language(s) from such small, sparse input?

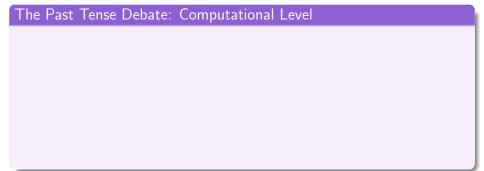
Computational Models: are one tool to explore this question

Propose mechanisms that may underlie acquisition

Another way to view this: Marr's Levels

- Computational Level: what are the goals of the computation?
 Map from small, sparse input to the learned grammar
- Algorithmic Level: what are the representations used for the input and output and what are the mechanisms that map between them?
 Computational modeling attempts to address this.

(Marr, 1982)



The Past Tense Debate: Computational Level

• Goal: learn -ed and its allomorphs

The Past Tense Debate: Computational Level

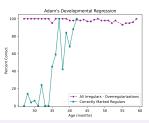
- Goal: learn -ed and its allomorphs
- Input: ≤ 500 verbs, not full paradigms

The Past Tense Debate: Computational Level

- Goal: learn -ed and its allomorphs
- Input: ≤ 500 verbs, not full paradigms
- Output: learned grammar that
 - Has an asymmetry between over-regularization and over-irregularization
 - Shows developmental regression

The Past Tense Debate: Computational Level

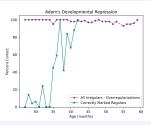
- Goal: learn -ed and its allomorphs
- Input: ≤ 500 verbs, not full paradigms
- Output: learned grammar that
 - Has an asymmetry between over-regularization and over-irregularization
 - Shows developmental regression



Dale Caldwell, Lt. Gov. Elect!

The Past Tense Debate: Computational Level

- Goal: learn -ed and its allomorphs
- Input: ≤ 500 verbs, not full paradigms
- Output: learned grammar that
 - Has an asymmetry between over-regularization and over-irregularization
 - Shows developmental regression



Dale Caldwell, Lt. Gov. Elect!

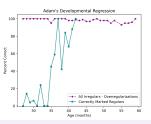
Rumelhart and McClelland (1986)

Distributed representations

Regulars and irregulars processed with the same associative memory mechanism

The Past Tense Debate: Computational Level

- Goal: learn -ed and its allomorphs
- Input: ≤ 500 verbs, not full paradigms
- Output: learned grammar that
 - Has an asymmetry between over-regularization and over-irregularization
 - Shows developmental regression



Dale Caldwell, Lt. Gov. Elect!

Rumelhart and McClelland (1986)

Distributed representations

Regulars and irregulars processed with the same associative memory mechanism

Pinker and Prince (1988)

Symbolic representations

Irregulars processed with associative memory, regulars processed with symbolic rule

Rumelhart and McClelland (1986) and Pinker and Prince (1988) agreed on the computational-level problem they were trying to solve!

Their disagreements were at the algorithmic level

Rumelhart and McClelland (1986) and Pinker and Prince (1988) agreed on the computational-level problem they were trying to solve!

• Their disagreements were at the algorithmic level

Today, we no longer agree on the computational level problem

Rumelhart and McClelland (1986) and Pinker and Prince (1988) agreed on the computational-level problem they were trying to solve!

Their disagreements were at the algorithmic level

Today, we no longer agree on the computational level problem

- Input:
 - Rumelhart and McClelland: 420 verbs
 - Kirov and Cotterell (2018): 3,500 verbs in their complete paradigm
 - Dankers et al. (2021): 46,000 German noun plurals
 - Warstadt and Bowman (2022): 100 million tokens (\approx input to 10 y.o.)
 - Hayes and Wilson (2008) remove marginal forms from train

Rumelhart and McClelland (1986) and Pinker and Prince (1988) agreed on the computational-level problem they were trying to solve!

Their disagreements were at the algorithmic level

Today, we no longer agree on the computational level problem

- Input:
 - Rumelhart and McClelland: 420 verbs
 - Kirov and Cotterell (2018): 3,500 verbs in their complete paradigm
 - Dankers et al. (2021): 46,000 German noun plurals
 - Warstadt and Bowman (2022): 100 million tokens (\approx input to 10 y.o.)
 - Hayes and Wilson (2008) remove marginal forms from train
- Developmental Patterns:
 - Rumelhart and McClelland tried to achieve developmental regression
 - Kirov and Cotterell claim micro U-shaped learning across epochs

(Marcus et al., 1992; Belth et al., 2021; Payne and Kodner, 2025)

Returning to the Computational Level

As computational models of language acquisition proliferate, it seems high time to return to our **formal**, **computational-level specification** of the problem of acquisition. We wish to develop:

Returning to the Computational Level

As computational models of language acquisition proliferate, it seems high time to return to our **formal**, **computational-level specification** of the problem of acquisition. We wish to develop:

1 A computational-level description of language acquisition

Returning to the Computational Level

As computational models of language acquisition proliferate, it seems high time to return to our **formal**, **computational-level specification** of the problem of acquisition. We wish to develop:

- A computational-level description of language acquisition
- A method for evaluating algorithmic implementations to determine whether they're plausible models

Outline

Computational-Level Description

The Input Sampling Function IThe Role of the Lexicon LFinalizing our Formalization Subcomponents and their Acquisition Functions A_C The Lexical Acquisition Function A_L

- Evaluation Evaluating A_L and I Implementing E Distributional Equivalence
- Conclusion

Formalizing the Acquisition Problem

Kodner and Payne (2025) provide a formalization of language acquisition as a mapping from some input sample to a sequence of hypothesized output grammars.

Formalizing the Acquisition Problem

Kodner and Payne (2025) provide a formalization of language acquisition as a mapping from some input sample to a sequence of hypothesized output grammars.

This can be given as a typed function (Pierce, 2002) below:

$$A:: L(g_t) \rightarrow \langle g_h^1, g_h^2, ..., g_h^n \rangle$$

Formalizing the Acquisition Problem

Kodner and Payne (2025) provide a formalization of language acquisition as a mapping from some input sample to a sequence of hypothesized output grammars.

This can be given as a typed function (Pierce, 2002) below:

$$A:: L(g_t) \rightarrow \langle g_h^1, g_h^2, ..., g_h^n \rangle$$

Our approach builds on this, with two critical changes.

Outline

Computational-Level Description The Input Sampling Function I

> The Role of the Lexicon LFinalizing our Formalization Subcomponents and their Acquisition Functions A_C The Lexical Acquisition Function A_L

- Evaluation Evaluating A_L and I Implementing E Distributional Equivalence
- Conclusion

The input to acquisition is not the entire extension of the target grammar

$$A :: L(g_t) \rightarrow \langle g_h^1, g_h^2, ..., g_h^n \rangle$$

The input to acquisition is not the entire extension of the target grammar

$$A:: L(g_t) \rightarrow \langle g_h^1, g_h^2, ..., g_h^n \rangle$$

Instead, it's some sequence of input utterances

$$\langle u^1, u^2, ..., u^n \rangle$$

sampled from $L(g_t)$ with particular distributional properties.

Brown (1973); MacWhinney (1996); Chan (2008); Lignos and Yang (2016)

This sequence of input utterances:

This sequence of input utterances:

Is made up of language (sequences of symbols) only
 (Landau et al., 1985; Bedny et al., 2019; Madasu and Lal, 2023)

This sequence of input utterances:

- Is made up of language (sequences of symbols) only
 (Landau et al., 1985; Bedny et al., 2019; Madasu and Lal, 2023)
- Is made up of positive examples only
 - Direct negative evidence (corrections) are ignored
 - Indirect negative evidence is a non-starter given gaps & sparisty

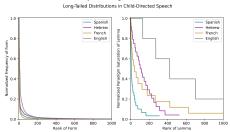
(Brown, 1970; Braine et al., 1971; Marcus et al., 1992; Marcus, 1993)

This sequence of input utterances:

- Is made up of language (sequences of symbols) only
 (Landau et al., 1985; Bedny et al., 2019; Madasu and Lal, 2023)
- Is made up of positive examples only
 - Direct negative evidence (corrections) are ignored
 - Indirect negative evidence is a non-starter given gaps & sparisty

(Brown, 1970; Braine et al., 1971; Marcus et al., 1992; Marcus, 1993)

• Follows a sparse, skewed frequency distribution



(Brown, 1973; MacWhinney, 1996; Chan, 2008; Lignos and Yang, 2016)

We define l to be the function which samples a sequence of n utterances from $L(g_t)$ which have these properties:

$$I:: L(g_t) \to n \to \langle u^1, u^2, ..., u^n \rangle$$

We define l to be the function which samples a sequence of n utterances from $L(g_t)$ which have these properties:

$$I :: \mathbf{L}(g_t) \to n \to \langle u^1, u^2, ..., u^n \rangle$$

Now we have:

$$A :: L(g_t) \to \langle g_h^1, g_h^2, ..., g_h^n \rangle$$

$$\downarrow \downarrow$$

$$A :: \langle u^1, u^2, ..., u^n \rangle \to \langle g_h^1, g_h^2, ..., g_h^n \rangle$$

Where the sequence $\langle u^1, u^2, ..., u^n \rangle$ is sampled by /!

Outline

Computational-Level Description

The Input Sampling Function I

The Role of the Lexicon L

Finalizing our Formalization Subcomponents and their Acquisition Functions $A_{\mathcal{L}}$ The Lexical Acquisition Function $A_{\mathcal{L}}$

- Evaluation Evaluating A_L and I Implementing E Distributional Equivalence
- Conclusion

Change 2: The Lexicon

Not everything in the child's **input** is in their **intake** and thus added to their lexicon. (Corder, 1967; Pearl, 2007; Gagliardi, 2012)

Change 2: The Lexicon

Not everything in the child's **input** is in their **intake** and thus added to their lexicon. (Corder, 1967; Pearl, 2007; Gagliardi, 2012)

 The acquisition algorithm builds not just the algorithm but the lexicon as well

Change 2: The Lexicon

Not everything in the child's **input** is in their **intake** and thus added to their lexicon. (Corder, 1967; Pearl, 2007; Gagliardi, 2012)

 The acquisition algorithm builds not just the algorithm but the lexicon as well

The acquisition function should output not just a sequence of hypothesized grammars, but a sequence of paired grammars and lexicons:

Change 2: The Lexicon

Not everything in the child's **input** is in their **intake** and thus added to their lexicon. (Corder, 1967; Pearl, 2007; Gagliardi, 2012)

 The acquisition algorithm builds not just the algorithm but the lexicon as well

The acquisition function should output not just a sequence of hypothesized grammars, but a sequence of paired grammars and lexicons:

$$A :: \langle u^{1}, u^{2}, ..., u^{n} \rangle \to \langle g_{h}^{1}, g_{h}^{2}, ..., g_{h}^{n} \rangle$$

$$\downarrow \downarrow$$

$$A :: \langle u^{1}, u^{2}, ..., u^{n} \rangle \to \langle (g_{h}^{1}, L^{1}), (g_{h}^{2}, L^{2}), ..., (g_{h}^{n}, L^{n}) \rangle$$

Outline

Computational-Level Description

The Input Sampling Function IThe Role of the Lexicon L

Finalizing our Formalization

Subcomponents and their Acquisition Functions A_C The Lexical Acquisition Function A_L

- Evaluation Evaluating A_L and I Implementing E Distributional Equivalence
- Conclusion

The final form of our acquisition function:

$$A::\langle u^1,u^2,...,u^n\rangle \rightarrow \langle (g_h^1,L^1),(g_h^2,L^2),...,(g_h^n,L^n)\rangle$$

The final form of our acquisition function:

$$A::\langle u^1,u^2,...,u^n\rangle \rightarrow \langle (g_h^1,L^1),(g_h^2,L^2),...,(g_h^n,L^n)\rangle$$

This is actually just the input-to-state map of a discrete time dynamical system! This is familiar to:

The final form of our acquisition function:

$$A :: \langle u^1, u^2, ..., u^n \rangle \to \langle (g_h^1, L^1), (g_h^2, L^2), ..., (g_h^n, L^n) \rangle$$

This is actually just the input-to-state map of a discrete time dynamical system! This is familiar to:

Previous formalizations of acquisition & language change

(e.g., Niyogi et al., 1997)

The final form of our acquisition function:

$$A::\langle u^1,u^2,...,u^n\rangle \rightarrow \langle (g_h^1,L^1),(g_h^2,L^2),...,(g_h^n,L^n)\rangle$$

This is actually just the input-to-state map of a discrete time dynamical system! This is familiar to:

Previous formalizations of acquisition & language change

(e.g., Niyogi et al., 1997)

 Constructivist approaches which view acquisition is viewed as a form of self-organization
 (Karaf, 1900), De Boar, 2000, 2005; Dressler et al., 2010; Dressler and Board to appear

(Karpf, 1990; De Boer, 2000, 2005; Dressler et al., 2019; Dressler and Payne, to appear)

The **final form of our acquisition function** is an input-to-state map of a discrete-time dynamical system:

$$A::\langle u^1,u^2,...,u^n\rangle \rightarrow \langle (g_h^1,L^1),(g_h^2,L^2),...,(g_h^n,L^n)\rangle$$

The **final form of our acquisition function** is an input-to-state map of a discrete-time dynamical system:

$$A::\langle u^1,u^2,...,u^n\rangle \rightarrow \langle (g_h^1,L^1),(g_h^2,L^2),...,(g_h^n,L^n)\rangle$$

But language acquisition happens **online**, so for our purposes it makes more sense to look at the **state update function**:

$$A :: u^{i} \to (g_{h}^{i}, L^{i}) \to (g_{h}^{i+1}, L^{i+1})$$

The final form of our acquisition function is an input-to-state map of a discrete-time dynamical system:

$$A :: \langle u^1, u^2, ..., u^n \rangle \to \langle (g_h^1, L^1), (g_h^2, L^2), ..., (g_h^n, L^n) \rangle$$

But language acquisition happens **online**, so for our purposes it makes more sense to look at the **state update function**:

$$A:: \mathbf{u}^i \to (g_h^i, L^i) \to (g_h^{i+1}, L^{i+1})$$

This tells us how we go from a single input instance and the current state of the grammar & lexicon to the next state of the grammar & lexicon.

Outline

Computational-Level Description

The Input Sampling Function *I*The Role of the Lexicon *L*Finalizing our Formalization

Subcomponents and their Acquisition Functions A_C

The Lexical Acquisition Function A_L

- Evaluation Evaluating A_L and I Implementing E Distributional Equivalence
- Conclusion

The Role of Subcomponents

Under most linguistic theories, the grammar is not an **undifferentiated** whole, but divided into **subcomponents**:

- Structure vs. meaning
- Phonological, morphological, syntactic, etc. structure
 (de Saussure, 1916; Chomsky, 1957; Jackendoff, 1972; Goldberg, 2006; Sadock, 2012, i.a.)

The Role of Subcomponents

Under most linguistic theories, the grammar is not an **undifferentiated** whole, but divided into **subcomponents**:

- Structure vs. meaning
- Phonological, morphological, syntactic, etc. structure
 (de Saussure, 1916; Chomsky, 1957; Jackendoff, 1972; Goldberg, 2006; Sadock, 2012, i.a.)

For ease of exposition, we will characterize this view as treating each g_h^i as a set of subcomponent grammars:

$$g_h^i = \{g_P^i, g_M^i, g_S^i, ...\}$$

Each subcomponent is learned from the same sequence of inputs and lexicon by a different (albeit related) acquisition function:

• The phonological subcomponent g_P is learned by A_P , the syntactic subcomponent g_S is learned by A_S , and so on.

Each subcomponent is learned from the same sequence of inputs and lexicon by a different (albeit related) acquisition function:

• The phonological subcomponent g_P is learned by A_P , the syntactic subcomponent g_S is learned by A_S , and so on.

This approach assumes a level of **independence** between the acquisition of each subcomponent:

 In line with modular approaches to the mind from cognitive science (Fodor 1983; Cosmides and Tooby 1992; Sperber 1994; Pinker 1997; Samuels 1998; Carruthers 2002, i.a.)

Each subcomponent is learned from the same sequence of inputs and lexicon by a different (albeit related) acquisition function:

• The phonological subcomponent g_P is learned by A_P , the syntactic subcomponent g_S is learned by A_S , and so on.

This approach assumes a level of **independence** between the acquisition of each subcomponent:

- In line with modular approaches to the mind from cognitive science (Fodor 1983; Cosmides and Tooby 1992; Sperber 1994; Pinker 1997; Samuels 1998; Carruthers 2002, i.a.)
- Allows us to retain a level of agnosticism regarding the exact subcomponents of g_h^i

Each subcomponent is learned from the same sequence of inputs and lexicon by a different (albeit related) acquisition function:

• The phonological subcomponent g_P is learned by A_P , the syntactic subcomponent g_S is learned by A_S , and so on.

This approach assumes a level of **independence** between the acquisition of each subcomponent:

- In line with modular approaches to the mind from cognitive science (Fodor 1983; Cosmides and Tooby 1992; Sperber 1994; Pinker 1997; Samuels 1998; Carruthers 2002, i.a.)
- Allows us to retain a level of agnosticism regarding the exact subcomponents of g_h^i

But it would still be easy to adapt this to **include interaction between the subcomponents** while remaining in line with our formalism!

For some **subcomponent** C, the role of A_C is to:

For some **subcomponent** C, the role of A_C is to:

• Select the relevant information from the input utterance u^i and lexicon

For some **subcomponent** C, the role of A_C is to:

- Select the relevant information from the input utterance u^i and lexicon
- Use this information to map from the input utterance u^i , current grammar g_C^i , and newly updated lexicon L^{i+1} to the next state of the grammar g_C^{i+1}

For some **subcomponent** C, the role of A_C is to:

- Select the relevant information from the input utterance u^i and lexicon
- Use this information to map from the input utterance uⁱ, current grammar gⁱ_C, and newly updated lexicon Lⁱ⁺¹ to the next state of the grammar gⁱ⁺¹_C

 A_C is thus given by:

$$A_C :: g_C^i \to u^i \to L^{i+1} \to g_C^{i+1}$$

For some **subcomponent** C, the role of A_C is to:

- Select the relevant information from the input utterance u^i and lexicon
- Use this information to map from the input utterance uⁱ, current grammar gⁱ_C, and newly updated lexicon Lⁱ⁺¹ to the next state of the grammar gⁱ⁺¹_C

 A_C is thus given by:

$$A_C :: g_C^i \to u^i \to L^{i+1} \to g_C^{i+1}$$

This is another state update function for a discrete time dynamical system!

Outline

Computational-Level Description

The Input Sampling Function IThe Role of the Lexicon LFinalizing our Formalization
Subcomponents and their Acquisition Functions A_0

The Lexical Acquisition Function A_L

- Evaluation Evaluating A_L and I Implementing E Distributional Equivalence
- Conclusion

We have the following definition of A_C :

$$A_C :: g_C^i \to u^i \to L^{i+1} \to g_C^{i+1}$$

We have the following definition of A_C :

$$A_C::g_C^i\to u^i\to L^{i+1}\to g_C^{i+1}$$

For all subcomponents C, the A_C s learn from the same lexicon L^{i+1}

We have the following definition of A_C :

$$A_C::g_C^i\to u^i\to L^{i+1}\to g_C^{i+1}$$

For all subcomponents C, the A_C s learn from the same lexicon L^{i+1}

We also want a function A_L that **updates the lexicon** to the next state L^{i+1} given u^i and L^i :

$$A_L :: L^i \to u^i \to L^{i+1}$$

We have the following definition of A_C :

$$A_C :: g_C^i \to u^i \to L^{i+1} \to g_C^{i+1}$$

For all subcomponents C, the A_C s learn from the same lexicon L^{i+1}

We also want a function A_L that **updates the lexicon** to the next state L^{i+1} given u^i and L^i :

$$A_L :: L^i \to u^i \to L^{i+1}$$

This is yet another state update function for a discrete time dynamical system!

Two crucial computational-level properties of A_L :

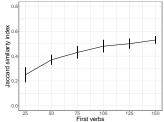
Two crucial **computational-level properties of** A_L :

Input frequency is a strong driver of order of acquisition

(Palermo and Eberhart 1968; Goodman et al. 2008; Swingley and Humphrey 2018; Braginsky et al. 2019)

Two crucial **computational-level properties of** A_L :

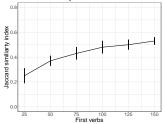
- Input frequency is a strong driver of order of acquisition
 (Palermo and Eberhart 1968; Goodman et al. 2008;
 Swingley and Humphrey 2018; Braginsky et al. 2019)
- Variation in the contents of early lexicons



(Demuth et al., 2006; Yang et al., in prep)

Two crucial **computational-level properties of** A_L :

- Input frequency is a strong driver of order of acquisition
 (Palermo and Eberhart 1968; Goodman et al. 2008;
 Swingley and Humphrey 2018; Braginsky et al. 2019)
- Variation in the contents of early lexicons



(Demuth et al., 2006; Yang et al., in prep)

A number of algorithmic-level implementations of A_L exist

(Yu and Smith 2007; Goodman et al. 2007; Frank et al. 2009; Fazly et al. 2010; Trueswell et al. 2013; Roembke and McMurray 2016; Stevens et al. 2017; Berens et al. 2018; Roembke et al. 2023; Yue et al. 2023; i.a.)

Putting it all Together

Having defined our **overall acquisition function** A, our **lexical acquisition function** A_L , and our **subcomponent acquisition functions** A_C , we can now define their relationship:

Putting it all Together

Having defined our overall acquisition function A, our lexical acquisition function A_L , and our subcomponent acquisition functions A_C , we can now define their relationship:

```
\begin{array}{l} \textbf{procedure} \ \textit{A}(\textit{u}^i, (\textit{g}^i_\textit{h}, \textit{L}^i)) \\ \textit{L}^{i+1} \leftarrow \textit{A}_\textit{L}(\textit{L}^i, \textit{u}^i) \\ \textit{g}^{i+1}_\textit{h} \leftarrow \bigcup_{\textit{g}^i_\textit{C} \in \textit{g}^i_\textit{h}} \textit{A}_\textit{C}(\textit{g}^i_\textit{C}, \textit{u}^i, \textit{L}^{i+1}) \\ \textbf{return} \ (\textit{g}^{i+1}_\textit{h}, \textit{L}^{i+1}) \\ \textbf{end procedure} \end{array}
```

Outline

Computational-Level Description
The Input Sampling Function I
The Role of the Lexicon L
Finalizing our Formalization
Subcomponents and their Acquisition Functions A_C
The Lexical Acquisition Function A_L

Evaluation

Evaluating A_L and I Implementing E Distributional Equivalence

Conclusion

The Evaluation Function

How do we determine whether an algorithmic implementation of A_C which fits our computational description is a plausible acquisition model?

The Evaluation Function

How do we determine whether an algorithmic implementation of A_C which fits our computational description is a plausible acquisition model?

We'll need an **evaluation function** *E* which:

How do we determine whether an algorithmic implementation of A_C which fits our computational description is a plausible acquisition model?

We'll need an evaluation function E which:

Takes in an acquisition algorithm A_C

How do we determine whether an algorithmic implementation of A_C which fits our computational description is a plausible acquisition model?

We'll need an evaluation function E which:

- Takes in an acquisition algorithm A_C
- Takes in some empirical results for the acquisition of that subcomponent R_C

How do we determine whether an algorithmic implementation of A_C which fits our computational description is a plausible acquisition model?

We'll need an evaluation function E which:

- Takes in an acquisition algorithm A_C
- Takes in some empirical results for the acquisition of that subcomponent R_C
- Returns a scalar score s corresponding to the plausibility of A_C

How do we determine whether an algorithmic implementation of A_C which fits our computational description is a plausible acquisition model?

We'll need an evaluation function E which:

- Takes in an acquisition algorithm A_C
- Takes in some empirical results for the acquisition of that subcomponent R_C
- Returns a scalar score s corresponding to the plausibility of A_C

$$E::A_C\to R_C\to s$$

Outline

- Computational-Level Description
 The Input Sampling Function I
 The Role of the Lexicon L
 Finalizing our Formalization
 Subcomponents and their Acquisition Functions A_C
 The Lexical Acquisition Function A_L
- Evaluation Evaluating A_L and I Implementing E Distributional Equivalence
- Conclusion

$$E::A_C\to R_C\to s$$

Problem: each A_C takes in the lexicon L^{i+1} and input utterance u^i

$$E::A_C\to R_C\to s$$

Problem: each A_C takes in the lexicon L^{i+1} and input utterance u^i

ullet So we also need functions to evaluate the plausibility of A_L and I

$$E::A_C\to R_C\to s$$

Problem: each A_C takes in the lexicon L^{i+1} and input utterance u^i

- So we also need functions to evaluate the plausibility of A_L and I
- Luckily, we have a lot of empirical evidence regarding the nature of both!

$$E::A_C\to R_C\to s$$

Problem: each A_C takes in the lexicon L^{i+1} and input utterance u^i

- ullet So we also need functions to evaluate the plausibility of A_L and I
- Luckily, we have a lot of empirical evidence regarding the nature of both!

Evaluating our Input Sampling Function I

$$E_I :: I \rightarrow s$$

Scores I based on:

- Sufficient variation in input between learners
- Sparse, skewed distributions
- Appropriate input size n

$$E::A_C\to R_C\to s$$

Problem: each A_C takes in the lexicon L^{i+1} and input utterance u^i

- ullet So we also need functions to evaluate the plausibility of A_L and I
- Luckily, we have a lot of empirical evidence regarding the nature of both!

Evaluating our Lexical Acquisition Function A_L

$$E_L :: A_L \rightarrow s$$

Scores A_I based on:

- Ability to learn a plausibly-sized lexicon
- Ability to exhibit variation in lexical acquisition trajectories
- Ability to do all this from a plausible /!

The Complete Evaluation Function

Given our implementations of E_l and E_L , let's expand our original E:

$$E:: I \rightarrow A_I \rightarrow A_C \rightarrow R_C \rightarrow s$$

Where I and A_L must have scored highly on E_I and E_L , respectively.

The Complete Evaluation Function

Given our implementations of E_l and E_L , let's expand our original E:

$$E:: I \rightarrow A_L \rightarrow A_C \rightarrow R_C \rightarrow s$$

Where I and A_L must have scored highly on E_I and E_L , respectively.

Taking in I allows us to evaluate A_C on a range of input sequences

Crucial for variation in acquisition trajectories!

Outline

Computational-Level Description The Input Sampling Function I The Role of the Lexicon L Finalizing our Formalization Subcomponents and their Acquisition Functions A_C The Lexical Acquisition Function A_L

Evaluation

Evaluating A_L and IImplementing EDistributional Equivalence

Conclusion

How do we implement our evaluation function *E*?

 It's not enough to state that our final hypothesized grammar achieves high accuracy!

How do we implement our evaluation function *E*?

- It's not enough to state that our final hypothesized grammar achieves high accuracy!
- The intermediate hypothesized grammars gⁱ_C provide a wealth of information about the acquisition trajectory & plausibility of A_C

How do we implement our evaluation function *E*?

- It's not enough to state that our final hypothesized grammar achieves high accuracy!
- The intermediate hypothesized grammars gⁱ_C provide a wealth of information about the acquisition trajectory & plausibility of A_C
 - Example: English past tense must show:
 - Developmental regression
 - Asymmetry between over-regularization vs. over-irregularization

How do we implement our evaluation function *E*?

- It's not enough to state that our final hypothesized grammar achieves high accuracy!
- The intermediate hypothesized grammars gⁱ_C provide a wealth of information about the acquisition trajectory & plausibility of A_C
 - Example: English past tense must show:
 - Developmental regression
 - Asymmetry between over-regularization vs. over-irregularization
 - Rumelhart and McClelland (1986) and Pinker and Prince (1988) agreed on this computational-level specification!

How do we evaluate this sequence of hypothesized grammars?

How do we evaluate this sequence of hypothesized grammars?

Intensional Equivalence is a non-starter

• The internal structure of the grammar is the main open question in theoretical linguistics!

How do we evaluate this sequence of hypothesized grammars?

Intensional Equivalence is a non-starter

 The internal structure of the grammar is the main open question in theoretical linguistics!

Strict Extensional Equivalence is also a non-starter

How do we evaluate this sequence of hypothesized grammars?

Intensional Equivalence is a non-starter

 The internal structure of the grammar is the main open question in theoretical linguistics!

Strict Extensional Equivalence is also a non-starter

- The language of the child's final grammar may not be identical to the language(s) of the grammar(s) of their caretaker(s)
- This is particularly true in cases of language change

```
(e.g., Niyogi et al., 1997; Kodner, 2020, 2022)
```

How do we evaluate this sequence of hypothesized grammars?

Intensional Equivalence is a non-starter

 The internal structure of the grammar is the main open question in theoretical linguistics!

Strict Extensional Equivalence is also a non-starter

- The language of the child's final grammar may not be identical to the language(s) of the grammar(s) of their caretaker(s)
- This is particularly true in cases of language change
 (e.g., Niyogi et al., 1997; Kodner, 2020, 2022)
- For any two learners A and B, we don't actually expect strict extensional equivalence between their grammars at time i

Consider the intermediate grammars of two learners of the English past tense.

Consider the intermediate grammars of two learners of the English past tense.

Learner A

Has intermediate morphological grammar g_M^A such that:

- $g_M^A(go) \rightarrow goed$
- $g_M^A(feel) \rightarrow felt$

Consider the intermediate grammars of two learners of the English past tense.

Learner A

Has intermediate morphological grammar g_M^A such that:

- $g_M^A(go) \rightarrow goed$
- $g_M^A(feel) \rightarrow felt$

Learner B

Has intermediate morphological grammar g_M^B such that:

- $g_M^B(go) o went$
- $g_M^A(feel) \rightarrow feeled$

Consider the intermediate grammars of two learners of the English past tense.

Learner A

Has intermediate morphological grammar g_M^A such that:

- $g_M^A(go) \rightarrow goed$
- $g_M^A(feel) \rightarrow felt$

Learner B

Has intermediate morphological grammar g_M^B such that:

- $g_M^B(go) \rightarrow went$
- $g_M^A(feel) \rightarrow feeled$

Which one of these is a **better model** of over-regularization?

Consider the intermediate grammars of two learners of the English past tense.

Learner A

Has intermediate morphological grammar g_M^A such that:

- $g_M^A(go) \rightarrow goed$
- $g_M^A(feel) \rightarrow felt$

Learner B

Has intermediate morphological grammar g_M^B such that:

- $g_M^B(go) \rightarrow went$
- $g_M^A(feel) \rightarrow feeled$

Which one of these is a better model of over-regularization?

Obviously, neither.

Outline

Computational-Level Description
The Input Sampling Function I
The Role of the Lexicon L
Finalizing our Formalization
Subcomponents and their Acquisition Functions A_C
The Lexical Acquisition Function A_L

Evaluation

Evaluating A_L and IImplementing EDistributional Equivalence

Conclusion

Intuition: we don't care about the **exact** outputs of our intermediate grammars for each input. Rather, we care about the **distribution** of these outputs.

Intuition: we don't care about the **exact** outputs of our intermediate grammars for each input. Rather, we care about the **distribution** of these outputs.

 Because learners A and B will receive distinct input sequences sampled by some I and build distinct lexicons based on some A_L, they will not be identical in their behavior in terms of specific lexical items

Intuition: we don't care about the **exact** outputs of our intermediate grammars for each input. Rather, we care about the **distribution** of these outputs.

- Because learners A and B will receive distinct input sequences sampled by some I and build distinct lexicons based on some A_L, they will not be identical in their behavior in terms of specific lexical items
- What matters is that both learner A and learner B show expected tendencies in their output distributions:
 - Asymmetry between over-regularization and over-irregularization
 - Developmental regression

Intuition: we don't care about the **exact** outputs of our intermediate grammars for each input. Rather, we care about the **distribution** of these outputs.

- Because learners A and B will receive distinct input sequences sampled by some I and build distinct lexicons based on some A_L, they will not be identical in their behavior in terms of specific lexical items
- What matters is that both learner A and learner B show expected tendencies in their output distributions:
 - Asymmetry between over-regularization and over-irregularization
 - Developmental regression

We'll refer to this notion as distributional equivalence.

This notion isn't new, but so far its implementation has been "vibes-based"

This notion isn't new, but so far its implementation has been "vibes-based"

Visual inspection of learner output to examine trajectory & comparison to relevant plots from acquisition

This notion isn't new, but so far its implementation has been "vibes-based"

- Visual inspection of learner output to examine trajectory & comparison to relevant plots from acquisition
- This actually makes a lot of sense given that so many models don't even pass the vibe check!
 - No NN, for example, has ever shown developmental regression

This notion isn't new, but so far its implementation has been "vibes-based"

- Visual inspection of learner output to examine trajectory & comparison to relevant plots from acquisition
- This actually makes a lot of sense given that so many models don't even pass the vibe check!
 - No NN, for example, has ever shown developmental regression

But to provide rigorous, quantified evaluations, we must go beyond this!

(Rumelhart and McClelland 1986; Pinker and Prince 1988; Belth et al. 2021; Payne and Kodner 2025; Kodner et al. 2025; Yang et al. in prep; Dressler and Payne to appear)

To quantify distributional equivalence, we want to have a metric that:

To quantify distributional equivalence, we want to have a metric that:

- Quantifies the similarity of two categorical distributions
 - In this case, that of g_C^i and R_C^i

To quantify distributional equivalence, we want to have a metric that:

- Quantifies the similarity of two categorical distributions
 - In this case, that of g_C^i and R_C^i
- Can do so over a series of time points

To quantify distributional equivalence, we want to have a metric that:

- Quantifies the similarity of two categorical distributions
 - In this case, that of g_C^i and R_C^i
- Can do so over a series of time points

Some candidates include:

Significance Testing:

To quantify distributional equivalence, we want to have a metric that:

- Quantifies the similarity of two categorical distributions
 - In this case, that of g_C^i and R_C^i
- Can do so over a series of time points

- Significance Testing:
 - G-Test: likelihood-ratio test which measures how probable the distribution of gⁱ_C is if it came from the same distribution as Rⁱ_C.

To quantify distributional equivalence, we want to have a metric that:

- Quantifies the similarity of two categorical distributions
 - In this case, that of g_C^i and R_C^i
- Can do so over a series of time points

- Significance Testing:
 - G-Test: likelihood-ratio test which measures how probable the distribution of gⁱ_C is if it came from the same distribution as Rⁱ_C.
 - χ^2 Test is likely more familiar; compares squared differences rather than likelihoods but is not ideal for small or uneven distributions.

To quantify distributional equivalence, we want to have a metric that:

- Quantifies the similarity of two categorical distributions
 - In this case, that of g_C^i and R_C^i
- Can do so over a series of time points

- Significance Testing:
 - G-Test: likelihood-ratio test which measures how probable the distribution of gⁱ_C is if it came from the same distribution as Rⁱ_C.
 - χ² Test is likely more familiar; compares squared differences rather than likelihoods but is not ideal for small or uneven distributions.
 - Fisher's Exact Test computes exact probability and is good for small samples, but doesn't scale up well.

To quantify distributional equivalence, we want to have a metric that:

- Quantifies the similarity of two categorical distributions
 - In this case, that of g_C^i and R_C^i
- Can do so over a series of time points

Some candidates include:

• Effect Size:

To quantify distributional equivalence, we want to have a metric that:

- Quantifies the similarity of two categorical distributions
 - In this case, that of g_C^i and R_C^i
- Can do so over a series of time points

- Effect Size:
 - Cramer's V effect size calculated from χ^2 or G-test by normalizing to a 0-1 scale.

To quantify distributional equivalence, we want to have a metric that:

- Quantifies the similarity of two categorical distributions
 - In this case, that of g_C^i and R_C^i
- Can do so over a series of time points

- Effect Size:
 - Cramer's V effect size calculated from χ^2 or G-test by normalizing to a 0-1 scale.
 - Jensen-Shannon divergence* symmetric measure of information difference between two distributions which ranges from 0 to 1.

To quantify distributional equivalence, we want to have a metric that:

- Quantifies the similarity of two categorical distributions
 - In this case, that of g_C^i and R_C^i
- Can do so over a series of time points

- Effect Size:
 - Cramer's V effect size calculated from χ^2 or G-test by normalizing to a 0-1 scale.
 - Jensen-Shannon divergence* symmetric measure of information difference between two distributions which ranges from 0 to 1.
 - Hellinger Distance symmetric measure of geometric distance between distributions.

To quantify distributional equivalence, we want to have a metric that:

- Quantifies the similarity of two categorical distributions
 - In this case, that of g_C^i and R_C^i
- Can do so over a series of time points

- Effect Size:
 - Cramer's V effect size calculated from χ^2 or G-test by normalizing to a 0-1 scale.
 - Jensen-Shannon divergence* symmetric measure of information difference between two distributions which ranges from 0 to 1.
 - Hellinger Distance symmetric measure of geometric distance between distributions.
 - Total Variation Distance (L1 distance) the fraction of probability mass that must be moved to transform between distributions.

To quantify distributional equivalence, we want to have a metric that:

- Quantifies the similarity of two categorical distributions
 - In this case, that of g_C^i and R_C^i
- Can do so over a series of time points

Some candidates include:

- Effect Size:
 - Cramer's V effect size calculated from χ^2 or G-test by normalizing to a 0-1 scale.
 - Jensen-Shannon divergence* symmetric measure of information difference between two distributions which ranges from 0 to 1.
 - Hellinger Distance symmetric measure of geometric distance between distributions.
 - Total Variation Distance (L1 distance) the fraction of probability mass that must be moved to transform between distributions.

What other measures do you suggest?

*Thanks to Caleb Belth for this suggestion!

Outline

- ① Computational-Level Description
 The Input Sampling Function IThe Role of the Lexicon LFinalizing our Formalization
 Subcomponents and their Acquisition Functions A_C The Lexical Acquisition Function A_L
- Evaluation
 Evaluating A_L and I
 Implementing E
 Distributional Equivalence
- Conclusion

In this presentation we have:

In this presentation we have:

 Provided a formalization of the language acquisition problem at Marr's computational level

In this presentation we have:

- Provided a formalization of the language acquisition problem at Marr's computational level
- Provided a computational-level description of the corresponding evaluation function

In this presentation we have:

- Provided a formalization of the language acquisition problem at Marr's computational level
- Provided a computational-level description of the corresponding evaluation function
- Discussed distributional equivalence and possible implementations

In this presentation we have:

- Provided a formalization of the language acquisition problem at Marr's computational level
- Provided a computational-level description of the corresponding evaluation function
- Discussed distributional equivalence and possible implementations

Open questions and next steps:

In this presentation we have:

- Provided a formalization of the language acquisition problem at Marr's computational level
- Provided a computational-level description of the corresponding evaluation function
- Discussed distributional equivalence and possible implementations

Open questions and next steps:

How do we quantify distributional equivalence? (suggestions welcome!)

In this presentation we have:

- Provided a formalization of the language acquisition problem at Marr's computational level
- Provided a computational-level description of the corresponding evaluation function
- Discussed distributional equivalence and possible implementations

Open questions and next steps:

- How do we quantify distributional equivalence? (suggestions welcome!)
- For the measures considered here, what's the role of variation?

In this presentation we have:

- Provided a formalization of the language acquisition problem at Marr's computational level
- Provided a computational-level description of the corresponding evaluation function
- Discussed distributional equivalence and possible implementations

Open questions and next steps:

- How do we quantify distributional equivalence? (suggestions welcome!)
- For the measures considered here, what's the role of variation?
- How do we apply these metrics over time series?

Thank you!

I am grateful to Caleb Belth, Charles Yang, Katie Schuler, Jordan Kodner, Scott Nelson, Jeff Heinz, Logan Swanson, and Dwyer Bradley for discussion.

This work was supported by the Institute for Advanced Computational Science Graduate Research Fellowship and the National Science Foundation Graduate Research Fellowship Program.

References I

- Marina Bedny, Jorie Koster-Hale, Giulia Elli, Lindsay Yazzolino, and Rebecca Saxe. 2019. There's more to "sparkle" than meets the eye: Knowledge of vision and light verbs among congenitally blind and sighted individuals. *Cognition*, 189:105–115.
- C. Belth, S. Payne, D. Beser, Jordan Kodner, and Charles Yang. 2021. The Greedy and Recursive Search for Morphological Productivity. In *Proceedings of the 43rd Annual Meeting of the Cognitive Science Society (CogSci)*, volume 43, pages 2869–2875.
- Sam C Berens, Jessica S Horst, and Chris M Bird. 2018. Cross-situational learning is supported by propose-but-verify hypothesis testing. *Current Biology*, 28(7):1132–1136.
- Mika Braginsky, Daniel Yurovsky, Virginia A Marchman, and Michael C Frank. 2019. Consistency and variability in children's word learning across languages. *Open Mind*, 3:52–67.
- Martin DS Braine et al. 1971. On two types of models of the internalization of grammars. *The ontogenesis of grammar*, 1971:153–186.
- Roger Brown. 1970. Derivational complexity and order of acquisition. *Cognition and Development of Language*.
- Roger Brown. 1973. A first language: The early stages. Harvard University Press, Cambridge, MA.

References II

- Peter Carruthers. 2002. The cognitive functions of language. *Behavioral and brain sciences*, 25(6):657–674.
- Erwin Chan. 2008. Structures and distributions in morphological learning. Ph.D. thesis, University of Pennsylvania, Philadelphia, PA.
- Noam Chomsky. 1957. Syntactic structures. Walter de Gruyter.
- Stephen Pit Corder. 1967. The significance of learners' errors. *IRAL: International Review of Applied Linguistics in Language Teaching*, 5(4):161–170.
- Leda Cosmides and John Tooby. 1992. Cognitive adaptations for social exchange. *The adapted mind: Evolutionary psychology and the generation of culture*, 163:163–228.
- Verna Dankers, Anna Langedijk, Kate McCurdy, Adina Williams, and Dieuwke Hupkes. 2021. Generalising to german plural noun classes, from the perspective of a recurrent neural network. In *Proceedings of the 25th Conference on Computational Natural Language Learning*, pages 94–108.
- Bart De Boer. 2000. Self-organization in vowel systems. *Journal of phonetics*, 28(4):441–465.
- Bart De Boer. 2005. Self-organisation in language. Self-organization and evolution of social systems, pages 123–139.

References III

- Ferdinand de Saussure. 1916. Course in General Linguistics. Columbia University Press.
- Katherine Demuth, Jennifer Culbertson, and Jennifer Alter. 2006. Word-minimality, epenthesis and coda licensing in the early acquisition of english. *Language and speech*, 49(2):137–173.
- Wolfgang U. Dressler, Anastasia Christofidou, Natalia Gagarina, Katharina Korecky-Kröll, and Marianne Kilani-Schoch. 2019. Morphological blind-alley developments as a theoretical challenge to both usage-based and nativist acquisition models. *The Italian Journal of Linguistics*, 31:107–140.
- Wolfgang U. Dressler and S. Payne. to appear. Self-Organization in Acquisition. In *Cambridge Handbook of Natural Linguistics*. Cambridge University Press.
- Afsaneh Fazly, Afra Alishahi, and Suzanne Stevenson. 2010. A probabilistic computational model of cross-situational word learning. *Cognitive science*, 34(6):1017–1063.
- Jerry A Fodor. 1983. The modularity of mind. MIT press.
- Michael C Frank, Noah D Goodman, and Joshua B Tenenbaum. 2009. Using speakers' referential intentions to model early cross-situational word learning. *Psychological science*, 20(5):578–585.

References IV

- Ann C Gagliardi. 2012. *Input and intake in language acquisition*. University of Maryland, College Park.
- Adele E Goldberg. 2006. Constructions at work: The nature of generalization in language. Oxford University Press.
- Judith C Goodman, Philip S Dale, and Ping Li. 2008. Does frequency count? Parental input and the acquisition of vocabulary. *Journal of child language*, 35(3):515–531.
- Noah Goodman, Joshua Tenenbaum, and Michael Black. 2007. A bayesian framework for cross-situational word-learning. *Advances in neural information processing systems*, 20.
- Bruce Hayes and Colin Wilson. 2008. A maximum entropy model of phonotactics and phonotactic learning. *Linguistic inquiry*, 39(3):379–440.
- Ray S Jackendoff. 1972. Semantic interpretation in generative grammar.
- Annemarie Karpf. 1990. Selbstorganisationsprozesse in der sprachlichen Ontogenese: Erst-und Fremdsprache (n), volume 352. Gunter Narr Verlag.
- Christo Kirov and Ryan Cotterell. 2018. Recurrent neural networks in linguistic theory: Revisiting Pinker and Prince (1988) and the Past Tense Debate. *Transactions of the Association for Computational Linguistics*, 6:651–665.

References V

- J. Kodner, S. Payne, S. Khalifa, and Z. Liu. 2025. Evaluating Learning Trajectories of Neural Morphology Acquisition Models. In *Linguistics Vanguard*. De Gruyter.
- Jordan Kodner. 2020. Language acquisition in the past. Ph.D. thesis, University of Pennsylvania.
- Jordan Kodner. 2022. Language acquisition guiding theory and diachrony: A case study from latin morphology. *Natural Language and Linguistic Theory*, 41:733–792.
- Jordan Kodner and Sarah Payne. 2025. Formally defining the learning setting for child language acquisition. Talk given at the "Computational Models of Learnability and Acquisition of Morphology and Phonology" special session at the 2025 Meeting of the Linguistic Society of America.
- Barbara Landau, Lila R Gleitman, and Barbara Landau. 1985. Language and experience: Evidence from the blind child. Harvard University Press.
- Constantine Lignos and Charles Yang. 2016. Morphology and language acquisition. In Andrew Hippisley and Gregory Stump, editors, *The Cambridge handbook of morphology*, pages 743–764. Cambridge University Press, Cambridge, UK.
- Brian MacWhinney. 1996. The CHILDES system. *American Journal of Speech-language Pathology*, 5(1):5–14.

References VI

- Avinash Madasu and Vasudev Lal. 2023. Is multimodal vision supervision beneficial to language? In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 2637–2642.
- Gary F Marcus. 1993. Negative evidence in language acquisition. *Cognition*, 46(1):53–85.
- Gary F Marcus, Steven Pinker, Michael Ullman, Michelle Hollander, T John Rosen, Fei Xu, and Harald Clahsen. 1992. Overregularization in language acquisition.

 Monographs of the society for research in child development, 57(4):1–178.
- David Marr. 1982. Vision: A computational investigation into the human representation and processing of visual information. MIT press.
- Partha Niyogi, Robert C Berwick, et al. 1997. A dynamical systems model for language change. *Complex Systems*, 11(3):161–204.
- David S Palermo and V Lynn Eberhart. 1968. On the learning of morphological rules: An experimental analogy. *Journal of Verbal Learning and Verbal Behavior*, 7(2):337–344.
- S. Payne and J. Kodner. 2025. Some Innate Characteristics of Neural Models of Morphological Inflection. In *Linguistics Vanguard*. De Gruyter.

References VII

- Lisa Sue Pearl. 2007. *Necessary bias in natural language learning*. Ph.D. thesis, University of Maryland, College Park, MD.
- Benjamin C Pierce. 2002. Types and programming languages. MIT press.
- Steven Pinker. 1997. How the mind works. WW Norton & Company.
- Steven Pinker and Alan Prince. 1988. On language and connectionism: Analysis of a parallel distributed processing model of language acquisition. *Cognition*, 28(1-2):73–193.
- Tanja C Roembke and Bob McMurray. 2016. Observational word learning: Beyond propose-but-verify and associative bean counting. *Journal of memory and language*, 87:105–127.
- Tanja C Roembke, Matilde E Simonetti, Iring Koch, and Andrea M Philipp. 2023. What have we learned from 15 years of research on cross-situational word learning? a focused review. *Frontiers in Psychology*, 14:1175272.
- David E. Rumelhart and James L. McClelland. 1986. On learning the past tenses of English verbs. In David E. Rumelhart, James L. McClelland, and the PDP Research Group, editors, *Parallel Distributed Processing*, volume 2, pages 216–271. The MIT Press, Cambridge, MA.

References VIII

- Jerrold M Sadock. 2012. The modular architecture of grammar. 132. Cambridge university press.
- Richard Samuels. 1998. Evolutionary psychology and the massive modularity hypothesis.
- Dan Sperber. 1994. The modularity of thought and the epidemiology of representations. *Mapping the mind: Domain specificity in cognition and culture*, 39:67.
- Jon Scott Stevens, Lila R Gleitman, John C Trueswell, and Charles Yang. 2017. The pursuit of word meanings. *Cognitive science*, 41:638–676.
- Daniel Swingley and Colman Humphrey. 2018. Quantitative linguistic predictors of infants' learning of specific English words. *Child development*, 89(4):1247–1267.
- John C Trueswell, Tamara Nicol Medina, Alon Hafri, and Lila R Gleitman. 2013. Propose but verify: Fast mapping meets cross-situational word learning. *Cognitive psychology*, 66(1):126–156.
- Alex Warstadt and Samuel R Bowman. 2022. What artificial neural networks can tell us about human language acquisition. In Shalom Lappin and Jean-Philippe Bernardy, editors, *Algebraic structures in natural language*, pages 17–60. CRC Press, Boca Raton.

References IX

- Charles Yang, Sarah Payne, Caleb Belth, and Jordan Kodner. in prep. An adequate discovery procedure.
- Chen Yu and Linda B Smith. 2007. Rapid word learning under uncertainty via cross-situational statistics. *Psychological science*, 18(5):414–420.
- Christine Soh Yue, Alexander S LaTourrette, Charles Yang, and John Trueswell. 2023. Memory as a computational constraint in cross-situational word learning. In *Proceedings of the Annual Meeting of the Cognitive Science Society*, volume 45.