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Introduction: Returning to the Computational Level

Central Mystery: how do children come to be competent, fluent
speakers of their native language(s) from such small, sparse input?

Computational Models: are one tool to explore this question

• Propose mechanisms that may underlie acquisition

Another way to view this: Marr’s Levels

• Computational Level: what are the goals of the computation?
Map from small, sparse input to the learned grammar

• Algorithmic Level: what are the representations used for the input
and output and what are the mechanisms that map between them?
Computational modeling attempts to address this.

(Marr, 1982)
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Marr’s Levels: An Example

The Past Tense Debate: Computational Level

• Goal: learn -ed and its allomorphs

• Input: ≤ 500 verbs, not full paradigms
• Output: learned grammar that

• Has an asymmetry between
over-regularization and
over-irregularization

• Shows developmental regression Dale Caldwell, Lt. Gov. Elect!

Rumelhart and McClelland (1986)

Distributed representations

Regulars and irregulars processed
with the same associative memory
mechanism

Pinker and Prince (1988)

Symbolic representations

Irregulars processed with
associative memory, regulars
processed with symbolic rule
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Introduction: Returning to the Computational Level

Rumelhart and McClelland (1986) and Pinker and Prince (1988)
agreed on the computational-level problem they were trying to solve!

• Their disagreements were at the algorithmic level

Today, we no longer agree on the computational level problem
• Input:

• Rumelhart and McClelland: 420 verbs
• Kirov and Cotterell (2018): 3,500 verbs in their complete paradigm
• Dankers et al. (2021): 46,000 German noun plurals
• Warstadt and Bowman (2022): 100 million tokens (≈ input to 10 y.o.)
• Hayes and Wilson (2008) remove marginal forms from train

• Developmental Patterns:
• Rumelhart and McClelland tried to achieve developmental regression
• Kirov and Cotterell claim micro U-shaped learning across epochs

(Marcus et al., 1992; Belth et al., 2021; Payne and Kodner, 2025)
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Introduction: Returning to the Computational Level

Returning to the Computational Level

As computational models of language acquisition proliferate, it seems high
time to return to our formal, computational-level specification of the
problem of acquisition. We wish to develop:

1 A computational-level description of language acquisition

2 A method for evaluating algorithmic implementations to
determine whether they’re plausible models
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Outline

1 Computational-Level Description
The Input Sampling Function I
The Role of the Lexicon L
Finalizing our Formalization
Subcomponents and their Acquisition Functions AC

The Lexical Acquisition Function AL

2 Evaluation
Evaluating AL and I
Implementing E
Distributional Equivalence

3 Conclusion
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Formalizing the Acquisition Problem

Kodner and Payne (2025) provide a formalization of language acquisition
as a mapping from some input sample to a sequence of hypothesized
output grammars.

This can be given as a typed function (Pierce, 2002) below:

A :: L(gt)→ ⟨g1
h , g

2
h , ..., g

n
h ⟩

Our approach builds on this, with two critical changes.
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Change 1: The Input Sampling Function I

The input to acquisition is not the entire extension of the target grammar

A :: L(gt)→ ⟨g1
h , g

2
h , ..., g

n
h ⟩

Instead, it’s some sequence of input utterances

⟨u1, u2, ..., un⟩

sampled from L(gt) with particular distributional properties.

Brown (1973); MacWhinney (1996); Chan (2008); Lignos and Yang (2016)
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Change 1: The Input Sampling Function I

This sequence of input utterances:

• Is made up of language (sequences of symbols) only
(Landau et al., 1985; Bedny et al., 2019; Madasu and Lal, 2023)

• Is made up of positive examples only
• Direct negative evidence (corrections) are ignored
• Indirect negative evidence is a non-starter given gaps & sparisty

(Brown, 1970; Braine et al., 1971; Marcus et al., 1992; Marcus, 1993)

• Follows a sparse, skewed frequency distribution

(Brown, 1973; MacWhinney, 1996; Chan, 2008; Lignos and Yang, 2016)
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Change 1: The Input Sampling Function I

We define I to be the function which samples a sequence of n
utterances from L(gt) which have these properties:

I :: L(gt)→ n→ ⟨u1, u2, ..., un⟩

Now we have:

A :: L(gt)→ ⟨g1
h , g

2
h , ..., g

n
h ⟩

⇓
A :: ⟨u1, u2, ..., un⟩ → ⟨g1

h , g
2
h , ..., g

n
h ⟩

Where the sequence ⟨u1, u2, ..., un⟩ is sampled by I !

Rutgers 2025 Distributional Equivalence in Language Acquisition Payne (Stony Brook) 11



Change 1: The Input Sampling Function I

We define I to be the function which samples a sequence of n
utterances from L(gt) which have these properties:

I :: L(gt)→ n→ ⟨u1, u2, ..., un⟩

Now we have:

A :: L(gt)→ ⟨g1
h , g

2
h , ..., g

n
h ⟩

⇓
A :: ⟨u1, u2, ..., un⟩ → ⟨g1

h , g
2
h , ..., g

n
h ⟩

Where the sequence ⟨u1, u2, ..., un⟩ is sampled by I !

Rutgers 2025 Distributional Equivalence in Language Acquisition Payne (Stony Brook) 11



Outline

1 Computational-Level Description
The Input Sampling Function I
The Role of the Lexicon L
Finalizing our Formalization
Subcomponents and their Acquisition Functions AC

The Lexical Acquisition Function AL

2 Evaluation
Evaluating AL and I
Implementing E
Distributional Equivalence

3 Conclusion

Rutgers 2025 Distributional Equivalence in Language Acquisition Payne (Stony Brook) 12



Change 2: The Lexicon

Not everything in the child’s input is in their intake and thus added to
their lexicon. (Corder, 1967; Pearl, 2007; Gagliardi, 2012)

• The acquisition algorithm builds not just the algorithm but the
lexicon as well

The acquisition function should output not just a sequence of
hypothesized grammars, but a sequence of paired grammars and
lexicons:

A :: ⟨u1, u2, ..., un⟩ → ⟨g1
h , g

2
h , ..., g

n
h ⟩

⇓
A :: ⟨u1, u2, ..., un⟩ → ⟨(g1

h , L
1), (g2

h , L
2), ..., (gn

h , L
n)⟩
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Finalizing our Formalization

The final form of our acquisition function:

A :: ⟨u1, u2, ..., un⟩ → ⟨(g1
h , L

1), (g2
h , L

2), ..., (gn
h , L

n)⟩

This is actually just the input-to-state map of a discrete time
dynamical system! This is familiar to:

• Previous formalizations of acquisition & language change
(e.g., Niyogi et al., 1997)

• Constructivist approaches which view acquisition is viewed as a
form of self-organization
(Karpf, 1990; De Boer, 2000, 2005; Dressler et al., 2019; Dressler and Payne, to appear)
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Finalizing our Formalization

The final form of our acquisition function is an input-to-state map of a
discrete-time dynamical system:

A :: ⟨u1, u2, ..., un⟩ → ⟨(g1
h , L

1), (g2
h , L

2), ..., (gn
h , L

n)⟩

But language acquisition happens online, so for our purposes it makes
more sense to look at the state update function:

A :: ui → (g i
h, L

i )→ (g i+1
h , Li+1)

This tells us how we go from a single input instance and the current
state of the grammar & lexicon to the next state of the grammar &
lexicon.
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A :: ui → (g i
h, L

i )→ (g i+1
h , Li+1)

This tells us how we go from a single input instance and the current
state of the grammar & lexicon to the next state of the grammar &
lexicon.
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The Role of Subcomponents

Under most linguistic theories, the grammar is not an undifferentiated
whole, but divided into subcomponents:

• Structure vs. meaning

• Phonological, morphological, syntactic, etc. structure
(de Saussure, 1916; Chomsky, 1957; Jackendoff, 1972; Goldberg, 2006; Sadock, 2012, i.a.)

For ease of exposition, we will characterize this view as treating each g i
h as

a set of subcomponent grammars:

g i
h = {g i

P , g
i
M , g i

S , ...}
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The Acquisition of a Subcomponent

Each subcomponent is learned from the same sequence of inputs and
lexicon by a different (albeit related) acquisition function:

• The phonological subcomponent gP is learned by AP , the syntactic
subcomponent gS is learned by AS , and so on.

This approach assumes a level of independence between the acquisition
of each subcomponent:

• In line with modular approaches to the mind from cognitive science
(Fodor 1983; Cosmides and Tooby 1992; Sperber 1994;

Pinker 1997; Samuels 1998; Carruthers 2002, i.a.)

• Allows us to retain a level of agnosticism regarding the exact
subcomponents of g i

h

But it would still be easy to adapt this to include interaction between
the subcomponents while remaining in line with our formalism!
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The Acquisition of a Subcomponent

For some subcomponent C , the role of AC is to:

• Select the relevant information from the input utterance ui and
lexicon

• Use this information to map from the input utterance ui , current
grammar g i

C , and newly updated lexicon Li+1 to the next state of
the grammar g i+1

C

AC is thus given by:

AC :: g i
C → ui → Li+1 → g i+1

C

This is another state update function for a discrete time dynamical
system!
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The Lexical Acquisition Function AL

We have the following definition of AC :

AC :: g i
C → ui → Li+1 → g i+1

C

For all subcomponents C , the AC s learn from the same lexicon Li+1

We also want a function AL that updates the lexicon to the next state
Li+1 given ui and Li :

AL :: Li → ui → Li+1

This is yet another state update function for a discrete time
dynamical system!
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The Lexical Acquisition Function AL

Two crucial computational-level properties of AL:

• Input frequency is a strong driver of order of acquisition
(Palermo and Eberhart 1968; Goodman et al. 2008;

Swingley and Humphrey 2018; Braginsky et al. 2019)

• Variation in the contents of early lexicons
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(Demuth et al., 2006; Yang et al., in prep)

A number of algorithmic-level implementations of AL exist
(Yu and Smith 2007; Goodman et al. 2007; Frank et al. 2009; Fazly et al. 2010;

Trueswell et al. 2013; Roembke and McMurray 2016; Stevens et al. 2017;
Berens et al. 2018; Roembke et al. 2023; Yue et al. 2023; i.a.)
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Putting it all Together

Having defined our overall acquisition function A, our lexical
acquisition function AL , and our subcomponent acquisition functions
AC , we can now define their relationship:

procedure A(ui , (g i
h, L

i ))
Li+1 ← AL(L

i , ui )
g i+1
h ←

⋃
g i
C∈g

i
h
AC (g

i
C , u

i , Li+1)

return (g i+1
h , Li+1)

end procedure
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The Evaluation Function

How do we determine whether an algorithmic implementation of AC

which fits our computational description is a plausible acquisition
model?

We’ll need an evaluation function E which:

• Takes in an acquisition algorithm AC

• Takes in some empirical results for the acquisition of that
subcomponent RC

• Returns a scalar score s corresponding to the plausibility of AC

E :: AC → RC → s
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The Evaluation Function

E :: AC → RC → s

Problem: each AC takes in the lexicon Li+1 and input utterance ui

• So we also need functions to evaluate the plausibility of AL and I

• Luckily, we have a lot of empirical evidence regarding the nature
of both!

Evaluating our Input Sampling Function I

EI :: I → s

Scores I based on:

• Sufficient variation in input between learners

• Sparse, skewed distributions

• Appropriate input size n
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The Evaluation Function

E :: AC → RC → s

Problem: each AC takes in the lexicon Li+1 and input utterance ui

• So we also need functions to evaluate the plausibility of AL and I

• Luckily, we have a lot of empirical evidence regarding the nature
of both!

Evaluating our Lexical Acquisition Function AL

EL :: AL → s

Scores AL based on:

• Ability to learn a plausibly-sized lexicon

• Ability to exhibit variation in lexical acquisition trajectories

• Ability to do all this from a plausible I !
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The Complete Evaluation Function

Given our implementations of EI and EL, let’s expand our original E :

E :: I → AL → AC → RC → s

Where I and AL must have scored highly on EI and EL, respectively.

Taking in I allows us to evaluate AC on a range of input sequences

• Crucial for variation in acquisition trajectories!
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Implementing E

How do we implement our evaluation function E?

• It’s not enough to state that our final hypothesized grammar
achieves high accuracy!

• The intermediate hypothesized grammars g i
C provide a wealth of

information about the acquisition trajectory & plausibility of AC
• Example: English past tense must show:

• Developmental regression
• Asymmetry between over-regularization vs. over-irregularization

• Rumelhart and McClelland (1986) and Pinker and Prince (1988)
agreed on this computational-level specification!
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Implementing E

How do we evaluate this sequence of hypothesized grammars?

Intensional Equivalence is a non-starter

• The internal structure of the grammar is the main open question
in theoretical linguistics!

Strict Extensional Equivalence is also a non-starter

• The language of the child’s final grammar may not be identical to
the language(s) of the grammar(s) of their caretaker(s)

• This is particularly true in cases of language change
(e.g., Niyogi et al., 1997; Kodner, 2020, 2022)

• For any two learners A and B, we don’t actually expect strict
extensional equivalence between their grammars at time i
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Distributional Equivalence

Consider the intermediate grammars of two learners of the English
past tense.

Learner A

Has intermediate morphological
grammar gA

M such that:

• gA
M(go) → goed

• gA
M(feel) → felt

Learner B

Has intermediate morphological
grammar gB

M such that:

• gB
M(go) → went

• gA
M(feel) → feeled

Which one of these is a better model of over-regularization?

Obviously, neither.
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Distributional Equivalence

Intuition: we don’t care about the exact outputs of our intermediate
grammars for each input. Rather, we care about the distribution of these
outputs.

• Because learners A and B will receive distinct input sequences
sampled by some I and build distinct lexicons based on some AL,
they will not be identical in their behavior in terms of specific
lexical items
• What matters is that both learner A and learner B show expected

tendencies in their output distributions:
• Asymmetry between over-regularization and over-irregularization
• Developmental regression

We’ll refer to this notion as distributional equivalence.

Rutgers 2025 Distributional Equivalence in Language Acquisition Payne (Stony Brook) 36



Distributional Equivalence

Intuition: we don’t care about the exact outputs of our intermediate
grammars for each input. Rather, we care about the distribution of these
outputs.

• Because learners A and B will receive distinct input sequences
sampled by some I and build distinct lexicons based on some AL,
they will not be identical in their behavior in terms of specific
lexical items

• What matters is that both learner A and learner B show expected
tendencies in their output distributions:
• Asymmetry between over-regularization and over-irregularization
• Developmental regression

We’ll refer to this notion as distributional equivalence.

Rutgers 2025 Distributional Equivalence in Language Acquisition Payne (Stony Brook) 36



Distributional Equivalence

Intuition: we don’t care about the exact outputs of our intermediate
grammars for each input. Rather, we care about the distribution of these
outputs.

• Because learners A and B will receive distinct input sequences
sampled by some I and build distinct lexicons based on some AL,
they will not be identical in their behavior in terms of specific
lexical items
• What matters is that both learner A and learner B show expected

tendencies in their output distributions:
• Asymmetry between over-regularization and over-irregularization
• Developmental regression

We’ll refer to this notion as distributional equivalence.

Rutgers 2025 Distributional Equivalence in Language Acquisition Payne (Stony Brook) 36



Distributional Equivalence

Intuition: we don’t care about the exact outputs of our intermediate
grammars for each input. Rather, we care about the distribution of these
outputs.

• Because learners A and B will receive distinct input sequences
sampled by some I and build distinct lexicons based on some AL,
they will not be identical in their behavior in terms of specific
lexical items
• What matters is that both learner A and learner B show expected

tendencies in their output distributions:
• Asymmetry between over-regularization and over-irregularization
• Developmental regression

We’ll refer to this notion as distributional equivalence.

Rutgers 2025 Distributional Equivalence in Language Acquisition Payne (Stony Brook) 36



Implementing Distributional Equivalence

This notion isn’t new, but so far its implementation has been
“vibes-based”

• Visual inspection of learner output to examine trajectory &
comparison to relevant plots from acquisition

• This actually makes a lot of sense given that so many models don’t
even pass the vibe check!
• No NN, for example, has ever shown developmental regression

But to provide rigorous, quantified evaluations, we must go beyond
this!

(Rumelhart and McClelland 1986; Pinker and Prince 1988;
Belth et al. 2021; Payne and Kodner 2025; Kodner et al. 2025;

Yang et al. in prep; Dressler and Payne to appear)
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Implementing Distributional Equivalence

To quantify distributional equivalence, we want to have a metric that:

• Quantifies the similarity of two categorical distributions
• In this case, that of g i

C and R i
C

• Can do so over a series of time points

Some candidates include:
• Significance Testing:

• G-Test: likelihood-ratio test which measures how probable the
distribution of g i

C is if it came from the same distribution as R i
C .

• χ2 Test is likely more familiar; compares squared differences rather
than likelihoods but is not ideal for small or uneven distributions.

• Fisher’s Exact Test computes exact probability and is good for small
samples, but doesn’t scale up well.
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Implementing Distributional Equivalence

To quantify distributional equivalence, we want to have a metric that:
• Quantifies the similarity of two categorical distributions

• In this case, that of g i
C and R i

C

• Can do so over a series of time points

Some candidates include:
• Effect Size:

• Cramer’s V effect size calculated from χ2 or G-test by normalizing to
a 0-1 scale.

• Jensen-Shannon divergence∗ symmetric measure of information
difference between two distributions which ranges from 0 to 1.

• Hellinger Distance symmetric measure of geometric distance between
distributions.

• Total Variation Distance (L1 distance) the fraction of probability
mass that must be moved to transform between distributions.

What other measures do you suggest?
∗Thanks to Caleb Belth for this suggestion!
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Conclusion and Open Questions

In this presentation we have:

• Provided a formalization of the language acquisition problem at
Marr’s computational level

• Provided a computational-level description of the corresponding
evaluation function

• Discussed distributional equivalence and possible implementations

Open questions and next steps:

• How do we quantify distributional equivalence? (suggestions
welcome!)

• For the measures considered here, what’s the role of variation?

• How do we apply these metrics over time series?
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Thank you!

I am grateful to Caleb Belth, Charles Yang, Katie Schuler, Jordan Kodner,
Scott Nelson, Jeff Heinz, Logan Swanson, and Dwyer Bradley for
discussion.

This work was supported by the Institute for Advanced Computational
Science Graduate Research Fellowship and the National Science
Foundation Graduate Research Fellowship Program.
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