Root Infinitives and the Acquisition of Morphological Marking

Background: Roo† Infinitives (RIs)

- Use of a non-finite verb in the matrix position:
- English: Papa have-Inf it
- Swahili: mbaza ...aza ku-ni-chund-a

Mbaza INF-OA ${ }_{1 . S G}$-pinch-IND

- French: Dormir petit bébé sleep-INF little baby
- German: mein Kakao hinstelln my cocoa put-INF
- Hebrew: Lashevet al ha-shulxan sit-INF on the-table (examples from Legate \& Yang 2007, Deen 2005)

Background: Cross-Linguistic Differences

- "Richer" agreement paradigms \Rightarrow shorter \& less frequent RI

Background: a Morphological Problem?

- Are RIs just the failure to apply a morphological process at PF?
- Apply nothing in the absence of productive rule?
- No: form-position correlations!

Background: a Morphological Problem?

- Are Rls just the failure to apply a morphological process at PF?
- Apply nothing in the absence of productive rule?
- No: form-position correlations!

	Finite Clauses	Non-Finite Clauses
German: $V \rightarrow \mathrm{~T} \rightarrow \mathrm{C}$: verb high	$\mathrm{V} \rightarrow \mathrm{T}$: verb-final	

Background: a Morphological Problem?

- Are RIs just the failure to apply a morphological process at PF?
- Apply nothing in the absence of productive rule?
- No: form-position correlations!

	Finite Clauses	Non-Finite Clauses
German: $V \rightarrow \mathrm{~T} \rightarrow \mathrm{C}$: verb high	$\mathrm{V} \rightarrow \mathrm{T}$: verb-final	
French: $V \rightarrow \mathrm{~T}$: before negation	V -in-situ: after negation	

Background: a Morphological Problem?

Form-Position Correlations in Root Infinitives

(Poeppel \& Wexler 1993, Pierce 1989 \& 1992, Phillips 1995)

Proposal

- Rls = byproduct of the acquisition of inflectional categories
- Child must learn which inflectional categories are marked
- English contrasts $\mathbf{\pm P A s t}$ but Mandarin doesn' \dagger
- Spanish contrasts $\mathbf{\pm 1}$ but English doesn'†
- Rls emerge before the child learns that their language marks tense
- More evidence for tense marking in high position \Rightarrow tense acquired earlier (Legate \& Yang 2007)
- Focus: modeling crosslinguistic differences in overall length \& frequency of Rl

Proposal

- Model of the acquisition of inflectional categories
- Matches developmental findings
- Order of acquisition
- Vocabulary size
- Correctly predicts cross-linguistic differences in RI stage

Preliminaries: Data

- Children learn frequent forms earlier
- Use most frequent forms from CHILDES
- Children use of distributional cues to learn meaning
- Intersect CHILDES with UniMorph as a proxy for these cues
- Input: (lemma, inflected, features)

Language	Lemma	Inflected	Features
English	walk	walked	$\{\mathrm{v}, \mathrm{PAST}, 3, \mathrm{SG}\}$
Spanish	amar	amaban	$\{\mathrm{v}, 3$, PL, PAST, IMPFV $\}$
French	/вә.gab.de/	/bә.gabd/	$\{\mathrm{v}$, IMP, PRES, 2, SG $\}$

(Goodman et al 2008, MacWhinney 2000, Kirov et al 2018)

Model: Sufficient Contrast Learner

- Principle of Contrast: distinct forms \Rightarrow distinct meanings
- e.g. walk and walked must mean something different
- Collisions: one lemma in multiple inflected forms
- e.g. walk-walked $\Rightarrow \pm$ Past is marked
- Infants sensitive to collisions: can relate nonce words to their stems as early as 0;6

Model: The TSP

- Is a single collision enough to learn marking?
- I am ~ you are \Rightarrow English marks 1 vs. 2 person?
- Should we require all lemmas to have collisions?
- Sparsity of the input: morphological paradigm saturation

- Syncretisms: e.g. put-put
(Chan 2008, Lignos \& Yang 2016)

Model: The Tolerance Principle

- When are there "enough" collisions to learn that an inflectional category is marked?
- Tolerance-Sufficiency Principle: threshold for generalization based on computational efficiency
- Given \mathbf{N} items, \mathbf{M} of which we've seen doing \mathbf{X}, all do \mathbf{X} iff:

$$
N-M \leq \theta_{N}=\frac{N}{\ln N}
$$

Model: Recursive Subdivision

- Take in input incrementally
- If inflection \boldsymbol{A} (less frequent) has a collision with inflection \boldsymbol{B} (more frequent):
- Do enough $\left(\boldsymbol{A}-\boldsymbol{\theta}_{\boldsymbol{A}}\right)$ verbs that appear in A appear in B in a different form than A?
- If enough words have a collision (by TSP):
- Subdivide the input based on the feature difference between A and B
- Recurse on each resulting set

Model: Toy Example

Model: Toy Example

- Collision: walk~walking - \pm PARTICIPLE marked?

Model: Toy Example

- Collision: walk~walking
$- \pm$ Participle marked?
- 5 participles, 4 collisions (no† wanting)
- $N-M=1<\theta_{5}=3 \nabla$
- Contrast 1 productive! \pm PARTICIPLE marked

Model: Toy Example

- Collision: walk~walking
$- \pm$ Participle marked?
- 5 participles, 4 collisions (no† wanting)

$$
\text { - } N-M=1<\theta_{5}=3 \nabla
$$

- Contrast 1 productive! +PARTICIPLE marked
- Subdivide into +PARTICIPLE and -PARTICIPLE forms

Model: Toy Example

- Collision: walk~walking
- \pm PARTICIPLE marked?
- 5 participles, 4 collisions (not wanting)
- $N-M=1<\theta_{5}=3 \nabla$
- Contrast 1 productive! \pm PARTICIPLE marked
- Subdivide into +Participle and -PARTICIPLE forms
- Recursively learn that ± 3.5 g marked

Experiments

- English vs. French vs. Spanish verbs (following Legate \& Yang 2007)
- English: longest \& most frequent RI
- French: in the middle
- Spanish: shortest \& least frequent RI
- Does our model match developmental findings?
- Order of acquisition
- Vocabulary size
- Can it account for cross-linguistic differences in RI?

Predictions

- All 3 languages: subject agreement before tense
- Richer agreement paradigm \Rightarrow more subdivision
- More subdivision \Rightarrow smaller Ns
- Smaller Ns \Rightarrow learn tense more quickly
- TSP tolerates relatively more exceptions for smaller \mathbf{N}
- $\theta_{10} \approx 4=40 \%$ but $\theta_{100} \approx 21=21 \%$
- Learn tense more quickly \Rightarrow shorter RI
\therefore Richer agreement paradigm \Rightarrow shorter RI

Results: English

- Order of acquisition:
- Participle
- 3.SG
- PASt

- Vocabulary size:
- A† 3;0 know $\leq \mathbf{2 5 0}$ verb stems
- Done learning at 188 stems
- Tense emerges:
- By 449 inflected forms (188 stems)

(Fenson et al. 1994, Bornstein et al. 2004, Berko 1958, Brown 1973)

Results: French

- Order of acquisition:
- Subject agreement early \& late
- Tense/aspect/mood after ± 1

7 Children: subject
agreement before tense/aspect/ mood

- Vocabulary size:
- At $1 ; 8$, children know ≤ 400 words
- Done learning at 232 stems
- Tense emerges:
- By 343 inflected forms (124 stems)

Results: Spanish

- Order of acquisition:
- Subject agreement Matches with
- Tense/aspect mood $\int \begin{aligned} & \text { develop } \\ & \text { findings }\end{aligned}$
- Vocabulary size:
- At $1 ; 8$, children know ≤ 400 words
- Done learning at 230 stems
- Tense emerges:
- By 237 inflected forms (103 stems)

Results: Cross-linguistic Differences

- Length of RI Stage in children:

Spanish < French < English

- Number of stems on which our model learns tense marking: Spanish (103) < French (124) < English (188)
- Number of inflected forms on which our model learns tense marking:

Spanish (237) < French (343) < English (449)

Discussion

- Our model: mechanistic account of RI stage as a byproduct of the acquisition of inflectional categories
- Relies only on inequality between inflected forms
- Future work:
- Apply to more languages
- Combine with grounded/distributional models to learn features
- Investigate high vs. non-high in French and German

Thank you!!

I am grateful to Charles Yang, Jordan Kodner, Jeff Heinz, Julie Anne Legate, Mark Aronoff, Bob Berwick and his lab, Kyle Gorman and the CUNY Computational Linguistics group, Salam Khalifa, and attendees of the Stony Brook University Brown Bag for comments and feedback.

I am grateful for funding by the Instituted for Advanced
Computational Science Graduate Research Fellowship and the National Science Foundation Graduate Research Fellowship.

Background: a Syntactic Problem?

- Are RIs just a failure of Agree?
- Failure of φ-agreement \Rightarrow substitution errors (e.g. I has it)

