Particle Filtering with Neural Language
Models: Modelling the Effects of Memory
on Incremental Sentence Processing
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Background

e Sentence processing in humans is online, incremental, and constrained by memory

e Language is ambiguous: in "garden path" sentences, a locally likely structural
hypothesis becomes globally implausible in the presence of disambiguating evidence
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The horse raced past the barn @ The horse raced past the barn fell




Reading Times and Garden Path Effects
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e Insight into sentence processing and garden
path effects in humans can be gained via eye
tracking and maze tasks

o Longer fixation times = greater trouble
incorporating word into hypothesized structure
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e Surprisal: log(1/P(wlC))
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e Surprisal has been used with language models to model processing difficulty, but
underpredicts the magnitude of garden path effects measured in humans

o If surprisal + neural language model is an accurate model of garden path processing, we expect
a linear relationship between surprisal and fixation/reading time




Surprisal and Memory Limitations

e Hypothesis: approximating the probability distribution P(wlC) with limited
parallel hypotheses via beam search or particle filtering will increase surprisal
effects

o Beam search will inflate surprisal effects at disambiguating words

o Inthe presence of structural ambiguity, surprisal will be inflated for all words under particle
filtering (Jensen's Inequality).



Our Model: Recurrent Neural Network Grammar (RNNG)

e Probabilistic model that generates syntactic trees
corresponding to structural hypotheses via
depth-first search / top-down parsing (Dyer et al S
2016).

o Explicit representation of structure is important for garden path

effects, which result from structural ambiguity
e Three types actions are probabilistically generated by
the model and are used to create the trees via a
stack-based algorithm:
ADJ ADJ ADV

Colorless green |deas sleep furiously

o NT: open a non-terminal (e.g. NP)
o SHIFT: add the next terminal (i.e. word)

o) REDUCE: close the current non-terminal




Our Model: Working Memory Limitations

e We use an RNNG trained on the BLLIP corpus (1.75 million sentences)
e We try three models of working memory limitations, all of which keep a
weighted set of k hypotheses in parallel:
o  Word-synchronous beam search
o Particle filtering

o Particle filtering with resampling



Word-Synchronous Beam Search

e \Variant of beam search where at each
word, the model recursively
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Particle Filtering

e Sequential Monte Carlo method to approximate the probability of the /" word w, given
the set of previous actions/structure y, .



Particle Filtering

e Sequential Monte Carlo method to approximate the probability of the /" word w, given
the set of previous actions/structure y, .

o For each particle, we recursively sample and apply actions until we get to a lexical action
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Particle Filtering

e Sequential Monte Carlo method to approximate the probability of the /" word w, given
the set of previous actions/structure y, .

o  For each particle, we recursively sample and apply actions until we get to a lexical action
o We re-weight each particle by the probability of w, occurring in that structure: P(w, | Y, )
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Particle Filtering

e Sequential Monte Carlo method to approximate the probability of the /" word w, given
the set of previous actions/structure y, .
o  For each particle, we recursively sample and apply actions until we get to a lexical action

o We re-weight each particle by the probability of w, occurring in that structure: P(w, | Y, )
o Finally, we re-sample with replacement to get a set of k particles for w.
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Particle Filtering with Resampling

e A modified version of particle filtering where we sample m, m > k, values from
our k particles and recursively resample with each until we reach a lexical
action in order to better approximate the action distribution.
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Particle Filtering with Resampling

e A modified version of particle filtering where we sample m, m > k, values from
our k particles and recursively resample with each until we reach a lexical
action in order to better approximate the action distribution.
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Particle Filtering with Resampling

e A modified version of particle filtering where we sample m, m > k, values from
our k particles and recursively resample with each until we reach a lexical
action in order to better approximate the action distribution.
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Model Testing and Comparison

e We compare our model's predictions against human i-maze times for main
verb/reduced relative (MVRR) ambiguity

e We consider the effects of k (the simulated number of hypotheses in working
memory) on Noun-Phraze/Zero (NPZ) ambiguity



Garden Path Sentences: Main Verb/Reduced Relative
(MV/RR) Ambiguity

These sentences cause garden paths by leading
the reader to interpret the start of a relative
clause as a main verb. We use 2x2 conditions:

1. Ambiguity of the verb: /
Garden Path: "The woman brought the sandwich from the
kitchen fell" VP pp

Unambiguous: "The woman given the sandwich from the
kitchen fell"

VBD 'N P
2. Reduction of the relative clause: / \
Qarden Path: "The woman brought the sandwich from the The Woman brought the sandW|ch from the kitchen
kitchen fell"

Unambiguous: "The woman who was brought the sandwich
from the kitchen fell"




Garden Path Sentences: MV/RR Ambiguity

® We test the three models on 27 sets
of 4 sentences used by Wilcox et al.
2021 and compare to the human
results from this study.

e We see correct relative surprisals
at the ambiguous verb and
disambiguator

o However, the relative magnitudes of
surprisal at the ambiguous verb and
disambiguator do not match humans

o We also see a spike across all
conditions for the disambiguator not
present in humans
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Garden Path Sentences: Noun Phrase Zero (NP/Z)
Ambiguity

These sentences cause garden paths by leading the

reader to interpret the subject of the second clause as
the object of the first clause. We use 2x2 conditions:
99

1. Transitivity of the verb: /
Garden Path: "When the dog bit the doctor took off the restraint” WHADVP NP VBD
Unambiguous: "When the dog struggled the doctor took off the
restraint”

When the dog blt the doctor
2. Comma between clauses:

Garden Path: "When the dog bit the doctor took off the restraint”
Unambiguous: "When the dog bit, the doctor took off the restraint"




Garden Path Sentences: NP/Z Ambiguity

From reading times, we have that the difference in disambiguator surprisal
between the comma and no-comma cases should be greater for the transitive

than intransitive verb.

Mean Effect Size

We measure effect size as transitive difference - intransitive difference

NP/Z Effect Size vs. k
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For particle filtering and beam search, the effect size
is larger for larger values of k, but for particle filter
with re-sampling, it is similar for all k and slightly
larger for smaller values of k.

Results on 24 sets of 4 sentences from Hu et al.
2020, m=100




Beam Search

Garden Path Sentences: NP/Z Ambiguity

e At comma/lack thereof, no-comma conditions show 1501
far higher surprisal ;
e At disambiguating verb, spike in surprisal o

o  Only particle filtering Particle Filter

NPIIZ Velrb Contin'uation
Particle Filter with Resampling

Start Transitive Verb Comma

with resampling
differentiates between
the spikes for the
comma and no-comma
conditions

12 A

10 1

Surprisal
Surprisal

Start Transitive Verb Comma Verb  Continuation

Only particle filtering
with resampling shows
the interaction we
expect to see
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Garden Path Sentences: NP/Z Ambiguity

Distribution of Predicted NT's at Ambiguously Attached Noun

e Does the model know
transitivity?
o More likely to predict the garden

path parse in the unambiguous
case than the ambiguous case
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Parsing Order and Distribution Approximation
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e Resampling ensures that each

hypothesis may be expanded more than NP VP
once vs. regular particle filtering >|<
e Future work: explore other parsing

orders, such as left corner The student who



Discussion & Conclusion

e For smaller values of k, a better approximation of the action distribution
yields larger garden path effects.

o Particle filtering with resampling combines small k and a more accurate approximation

e [Even under these conditions, however, the model still fails to fully predict
human garden path effects.

e Future:

o More accurate approximation of the distribution -- resampling and transitivity issues

o More accurate parsing algorithms
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