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Background

● Sentence processing in humans is online, incremental, and constrained by memory

● Language is ambiguous: in "garden path" sentences, a locally likely structural 
hypothesis becomes globally implausible in the presence of disambiguating evidence 



Reading Times and Garden Path Effects

● Insight into sentence processing and garden 
path effects in humans can be gained via eye 
tracking and maze tasks

○ Longer fixation times = greater trouble 
incorporating word into hypothesized structure 

Courtesy of Wilcox et al 2021



Surprisal and Fixation Time

● Surprisal: log(1/P(w|C))

○ Smaller probability --> higher surprisal 

● Surprisal has been used with language models to model processing difficulty, but 
underpredicts the magnitude of garden path effects measured in humans

○ If surprisal + neural language model is an accurate model of garden path processing, we expect 
a linear relationship between surprisal and fixation/reading time

Courtesy of Wilcox et al 2021



Surprisal and Memory Limitations

● Hypothesis: approximating the probability distribution P(w|C) with limited 
parallel hypotheses via beam search or particle filtering will increase surprisal 
effects

○ Beam search will inflate surprisal effects at disambiguating words

○ In the presence of structural ambiguity, surprisal will be inflated for all words under particle 
filtering (Jensen's Inequality).  



Our Model: Recurrent Neural Network Grammar (RNNG)

● Probabilistic model that generates syntactic trees 
corresponding to structural hypotheses via 
depth-first search / top-down parsing (Dyer et al 
2016).

○ Explicit representation of structure is important for garden path 
effects, which result from structural ambiguity 

● Three types actions are probabilistically generated by 
the model and are used to create the trees via a 
stack-based algorithm:

○ NT: open a non-terminal (e.g. NP)

○ SHIFT: add the next terminal (i.e. word)

○ REDUCE: close the current non-terminal



Our Model: Working Memory Limitations 

● We use an RNNG trained on the BLLIP corpus (1.75 million sentences) 

● We try three models of working memory limitations, all of which keep a 
weighted set of k hypotheses in parallel: 

○ Word-synchronous beam search 

○ Particle filtering 

○ Particle filtering with resampling 



Word-Synchronous Beam Search

● Variant of beam search where at each 
word, the model recursively 
enumerates and applies all possible 
next actions until enough of the 
high-scoring states reach the next 
lexical action (Hale et al 2018)

○ The beam is composed of the top k of the 
actions that reach the next lexical state

○ Ensures that all hypotheses at each 
timestamp end in the same lexical action 
corresponding to the generation of the 
next word 



Particle Filtering
● Sequential Monte Carlo method to approximate the probability of the ith word wi given 

the set of previous actions/structure y1...i 
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Particle Filtering
● Sequential Monte Carlo method to approximate the probability of the ith word wi given 

the set of previous actions/structure y1...i 

○ For each particle, we recursively sample and apply actions until we get to a lexical action
○ We re-weight each particle by the probability of wi occurring in that structure: P(wi | yi...1)
○ Finally, we re-sample with replacement to get a set of k particles for wi. 



Particle Filtering with Resampling

● A modified version of particle filtering where we sample m, m > k, values from 
our k particles and recursively resample with each until we reach a lexical 
action in order to better approximate the action distribution.



Particle Filtering with Resampling

● A modified version of particle filtering where we sample m, m > k, values from 
our k particles and recursively resample with each until we reach a lexical 
action in order to better approximate the action distribution.



Particle Filtering with Resampling

● A modified version of particle filtering where we sample m, m > k, values from 
our k particles and recursively resample with each until we reach a lexical 
action in order to better approximate the action distribution.



Model Testing and Comparison

● We compare our model's predictions against human i-maze times for main 
verb/reduced relative (MVRR) ambiguity 

● We consider the effects of k (the simulated number of hypotheses in working 
memory) on Noun-Phraze/Zero (NPZ) ambiguity 



Garden Path Sentences: Main Verb/Reduced Relative 
(MV/RR) Ambiguity 
These sentences cause garden paths by leading 
the reader to interpret the start of a relative 
clause as a main verb. We use 2x2 conditions: 

1. Ambiguity of the verb: 
Garden Path: "The woman brought the sandwich from the 
kitchen fell"
Unambiguous: "The woman given the sandwich from the 
kitchen fell"

2. Reduction of the relative clause: 
Garden Path: "The woman brought the sandwich from the 
kitchen fell" 
Unambiguous: "The woman who was brought the sandwich 
from the kitchen fell"



Garden Path Sentences: MV/RR Ambiguity

● We see correct relative surprisals 
at the ambiguous verb and 
disambiguator

○ However, the relative magnitudes of 
surprisal at the ambiguous verb and 
disambiguator do not match humans

○ We also see a spike across all 
conditions for the disambiguator not 
present in humans 

Results on 27 sets of 4 
sentences used by 
Wilcox et al. 2021
k=5, m=100

● We test the three models on 27 sets 
of 4 sentences used by Wilcox et al. 
2021 and compare to the human 
results from this study. 



Garden Path Sentences: Noun Phrase Zero (NP/Z) 
Ambiguity 
These sentences cause garden paths by leading the 
reader to interpret the subject of the second clause as 
the object of the first clause. We use 2x2 conditions: 

1. Transitivity of the verb:
Garden Path: "When the dog bit the doctor took off the restraint"
Unambiguous: "When the dog struggled the doctor took off the 
restraint" 

2. Comma between clauses: 
Garden Path: "When the dog bit the doctor took off the restraint"
Unambiguous: "When the dog bit, the doctor took off the restraint" 



Garden Path Sentences: NP/Z Ambiguity 
● From reading times, we have that the difference in disambiguator surprisal 

between the comma and no-comma cases should be greater for the transitive 
than intransitive verb.

● We measure effect size as transitive difference - intransitive difference

For particle filtering and beam search, the effect size 
is larger for larger values of k, but for particle filter 
with re-sampling, it is similar for all k and slightly 
larger for smaller values of k.

Results on 24 sets of 4 sentences from Hu et al. 
2020, m=100 



Garden Path Sentences: NP/Z Ambiguity 

● At comma/lack thereof, no-comma conditions show 
far higher surprisal 

● At disambiguating verb, spike in surprisal

Results on 24 sets of 4 
sentences from Hu et al. 
2020, k=5, m=100 

○ Only particle filtering 
with resampling  
differentiates between 
the spikes for the 
comma and no-comma 
conditions

○ Only particle filtering 
with resampling shows 
the interaction we 
expect to see



Garden Path Sentences: NP/Z Ambiguity

● Does the model know 
transitivity?

○ More likely to predict the garden 
path parse in the unambiguous 
case than the ambiguous case 



Parsing Order and Distribution Approximation

● If the model makes an incorrect 
top-down prediction, it cannot recover 
when it encounters the next word.

● Resampling ensures that each 
hypothesis may be expanded more than 
once vs. regular particle filtering

● Future work: explore other parsing 
orders, such as left corner 



Discussion & Conclusion

● For smaller values of k, a better approximation of the action distribution 
yields larger garden path effects.

○ Particle filtering with resampling combines small k and a more accurate approximation

● Even under these conditions, however, the model still fails to fully predict 
human garden path effects.

● Future: 

○ More accurate approximation of the distribution -- resampling and transitivity issues 

○ More accurate parsing algorithms 
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