Morphological Generalization by Children & Computers

Sarah Brogden Payne

<u>sarah.payne@stonybrook.edu</u> | <u>paynesa.github.io</u>

MIT Department of Brain & Cognitive Sciences April 19, 2024

Morphological Inflection

• Patterns of word formation to express grammatical categories

- English: walk+PAST \rightarrow walked
- Mandarin: 3+PL → tāmen 'they'
- Hebrew: $\sqrt{\hbar t l}$ +DIM+SG+DEF \rightarrow haħataltul 'the kitty'
- Latin: $amic+FEM+SG+GEN \rightarrow amicae$ 'the friend's'
- Shona: bik+1sg.Subj+6cl.Obj+Past+Caus+Pass→ ndakachibikiswa
 'I was made to cook it'

Morphological Inflection

- Patterns of word formation to express grammatical categories
 - **Roots/stems** modified by many processes
 - Suffixation/prefixation/circumfixation, stem mutations, reduplication
 - Express number, tense, mood, voice, aspect, evidentiality,...
 - Common across the world's languages
 - Vary dramatically in terms of complexity or "richness"
 - Poses a learning challenge for both machines and humans

Morphological Inflection: Applications

Cognitive Modeling

• Insight into the **cognitive computations** underlying morphological learning

Past Tense Debate

- Early connectionist account (Rumelhart & McClelland 1986)
- Several shortcomings

Recent advances in ANN architectures

• Renewed interest in the plausibility of ANNs as **cognitive models**

Natural Language Processing

- Traditionally: downstream tasks
 - In settings where **pipelining** is still common (e.g., **low-resource**)
 - Particularly for languages with lots of inflectional morphology
- May provide insight into the behavior of **ANN architectures**
 - A particular kind of **string-to-string** mapping problem
 - Varying performance may reflect **divergent properties** of different architectures

Morphological Inflection: Solved?

- Kirov & Cotterell (2018): encoder-decoder network can
 overcome practical limitations of older ANNs
 - Near 100% test accuracy
 - Learn several inflectional classes at once

Predictions don't match well with human nonce word judgments

• Over-irregularizes compared to humans!

- Massive variability in model rankings between seeds
 - Correlation with human ratings also varies massively

Morphological Inflection: Solved?

Best systems on a subset of the 2018 CONLL-SIGMORPHON shared task

	High	Medium	Low
Adyghe	100.00(uzh-2)	94.40(uzh-1)	90.60(ua-8)
Albanian	98.90(bme-2)	88.80(iitbhu-iiith-2)	36.40(uzh-1)
Arabic	93.70(uzh-1)	79.40(uzh-1)	45.20(uzh-1)
Armenian	96.90(bme-2)	92.80(uzh-1)	64.90(uzh-1)
Asturian	98.70(uzh-1)	92.40(iitbhu-iiith-2)	74.60(uzh-2)
Azeri	100.00(axsemantics-2)	96.00(iitbhu-iiith-2)	65.00(iitbhu-iiith-2)
Bashkir	99.90(uzh-2)	97.30(uzh-2)	77.80(iitbhu-iiith-1)
Basque	98.90(bme-2)	88.10(iitbhu-iiith-2)	13.30(uzh-1)
Belarusian	94.90(uzh-1)	70.40(uzh-1)	33.40(ua-8)
Bengali	99.00(bme-3)	99.00(uzh-2)	72.00(uzh-2)
Breton	100.00(waseda-1)	96.00(uzh-2)	72.00(uzh-1)
Bulgarian	98.30(uzh-2)	83.80(uzh-2)	62.90(ua-8)
Catalan	98.90(uzh-2)	92.80(waseda-1)	72.50(ua-8)
Classical-syriac	100.00(axsemantics-1)	100.00(axsemantics-2)	96.00(uzh-2)
Cornish	—	70.00(uzh-1)	40.00(ua-4)
Crimean-tatar	100.00(iit-varanasi-1)	98.00(uzh-2)	91.00(iitbhu-iiith-2)
Czech	94.70(uzh-1)	87.20(uzh-1)	46.50(uzh-2)
Danish	95.50(uzh-1)	80.40(uzh-1)	87.70(ua-6)
Dutch	97.90(uzh-1)	85.70(uzh-1)	69.30(ua-6)
English	97.10(uzh-2)	94.50(uzh-1)	91.80(ua-8)

Very good performance on medium and high training

MIT BCS 04/19/24

Morphological Inflection: Solved?

Performance on closely-related languages is highly variable

Azeri Turkish Turkmen	100.00(axsemantics-2) 98.50(uzh-2) —	96.00(iitbhu-iiith-2) 90.70(uzh-1) 98.00(iitbhu-iiith-	65.00(iitbhu-iiith-2) 39.50(iitbhu-iiith-2) 1) 90.00(uzh-2)	Czech Slovak	94.70(uzh-1) 97.10(uzh-1)	87.20(uzh-1) 78.60(uzh-1)	46.50(uzh-2) 51.80(uzh-2)
Belarusian Russian Ukrainian	94.90(uzh-1) 94.40(uzh-2) 96.20(uzh-2)	70.40(uzh-1) 86.90(uzh-1) 81.40(uzh-1)	33.40(ua-8) 53.50(uzh-1) 57.10(ua-6)	Galician Portuguese	99.50(uzh-1) 98.60(uzh-2)	90.80(uzh-1) 94.80(uzh-2)	61.10(uzh-2) 75.80(uzh-2)
Finnish Ingrian Karelian	95.40(uzh-1) —	82.80(uzh-1) 92.00(uzh-2) 100.00(uzh-2)	25.70(uzh-1) 46.00(iitbhu-iiith-2) 94.00(ua-5)	Irish Scottish-gaeli	91.50(uzh-2) c —	77.10(uzh-1) 94.00(iitbhu-ii	37.70(uzh-1) ith-1) 74.00(iitbhu-iiith-2)
Kashubian Lower-sorbian Polish	— 97.80(uzh-1) 93.40(uzh-2)	88.00(bme-2) 85.10(uzh-1) 82.40(uzh-2)	68.00(ua-5) 54.30(ua-6) 49.40(ua-6)		-		flection
Danish Norwegian-bok Swedish	95.50(uzh-1) maal 92.10(uzh-2) 93.30(uzh-1)	80.40(uzh-1) 84.10(uzh-1) 79.80(uzh-1)	87.70(ua-6) 90.10(ua-6) 79.00(ua-8)	isn'	't solve	d!	

Morphological Inflection: Outstanding Issues

- ANNs are trained on unrealistically large/saturated data
- ANNs are rarely evaluated against child learning trajectories and error patterns

- Belth, Payne et al. (2021, Cogsci) Kodner, Payne et al. (2023, ACL) Kodner, Khalifa, Payne, & Liu (2023, Cogsci)
- Current evaluation metrics fail to control for:
 - Overlap between train and test
 - Performance **variation** across multiple splits
 - Frequency effects in uniform sampling

Kodner, Payne et al. (2023, ACL) Kodner, Khalifa & Payne (2023, EMNLP)

Outline

Background

- Defining the task
- Input sparsity
- Developmental trajectories & error patterns

Developmentally-grounded evaluation

- Another approach: Abduction of Tolerable Productivity
- Revisiting the train-test overlap
- Probing feature-based generalization
- Conclusions

Outline

Background

- Defining the task
- Input sparsity
- Developmental trajectories & error patterns

Developmentally-grounded evaluation

- Another approach: Abduction of Tolerable Productivity
- Revisiting the train-test overlap
- Probing feature-based generalization
- Conclusions

Morphological Inflection as an NLP Task

• **Training**: (lemma, inflected form, feature set)

swim	swam	V;Pst	
eat	eats	V;PRS;3;SG	
cat	cats	N;PL	
• • •	• • •	•••	

• Testing: (lemma, feature set) \rightarrow inflected form

swim	?	V;Prs;3;S G
box	?	N;PL
cat	?	N;SG
• • •	• • •	• • •

Morphological Inflection as an NLP Task

• **Training**: (lemma, inflected form, feature set)

swim	swam	V;Pst	
eat	eats	V;PRS;3;SG	
cat	cats	N;PL	
• • •	• • •	• • •	

• Testing: (lemma, feature set) \rightarrow inflected form

swim	swims	V;PRS;3;SG
box	boxes	N;PL
cat	cat	N;SG
• • •	• • •	•••

Outline

Background

- Defining the task
- Input sparsity
- Developmental trajectories & error patterns

Developmentally-grounded evaluation

- Another approach: Abduction of Tolerable Productivity
- Revisiting the train-test overlap
- Probing feature-based generalization
- Conclusions

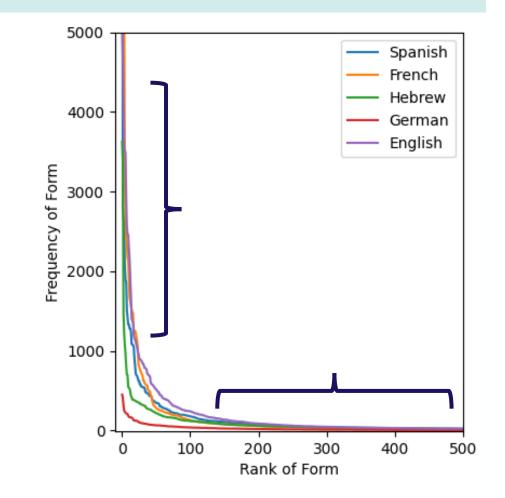
Input Sparsity: Zipf's Law

• Zipf's law: word rank inversely proportional to frequency

 $f(r) \propto \frac{1}{r}$

Consequences:

- A few forms occur very frequently
- Most occur very rarely (long tail)



(data from Payne et al 2021, Belth et al 2021, Payne 2022, and Payne 2023)

MIT BCS 04/19/24

• Long-tailed distributions in morphology: Paradigm Saturation

• How many possible inflected forms does a lemma actually occur in?

	Present	Preterite	Imperfect	Conditional	Future
1\$G	amo	amé	amaba	amaría	amaré
2SG	amas	amaste	amabas	amarías	amarás
3SG	ama	amó	amaba	amaría	amará
1PL	amamos	amamos	amábamos	amaríamos	amaremos
2PL	amáis	amasteis	amabais	amaríais	amaréis
3PL	aman	amaron	amaban	amarían	amarán

(Chan 2008, Lignos & Yang 2016)

Payne: Morphological Generalization by Children & Computers

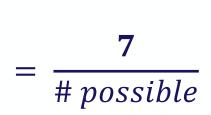
seen

 $saturation = \frac{1}{\# possible}$

• Long-tailed distributions in morphology: Paradigm Saturation

• How many possible inflected forms does a lemma actually occur in?

	Present	Preterite	Imperfect	Conditional	Future
1SG	amo		amaba		amaré
2SG		amaste			
3SG	ama		amaba		
1PL	amamos				
2PL					
3PL					



 $saturation = \frac{11}{\# possible}$

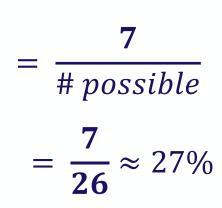
seen

(Chan 2008, Lignos & Yang 2016)

• Long-tailed distributions in morphology: Paradigm Saturation

• How many possible inflected forms does a lemma actually occur in?

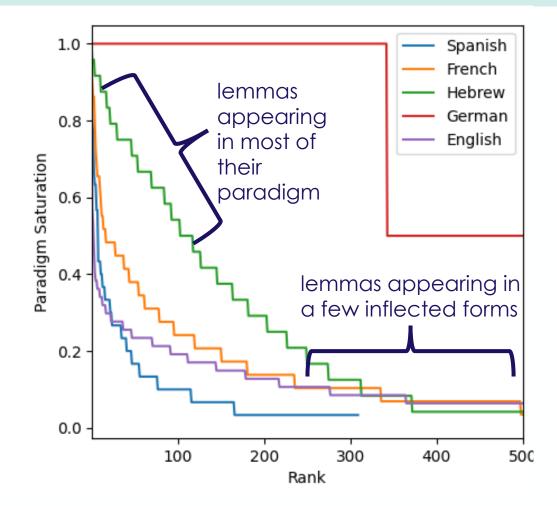
	Present	Preterite	Imperfect	Conditional	Future
1SG	amo	trabajé	amaba	trabajía	amaré
2SG	tomas	amaste	mirabas	mirarías	esperás
3SG	ama	esperó	amaba	espería	tomará
1PL	amamos	miramos	mirabamos	tomaríamos	miraremos
2PL	tratáis				
3PL	esperan	miraron	entraban	tratarían	entrarán



seen

 $saturation = \frac{1}{\# possible}$

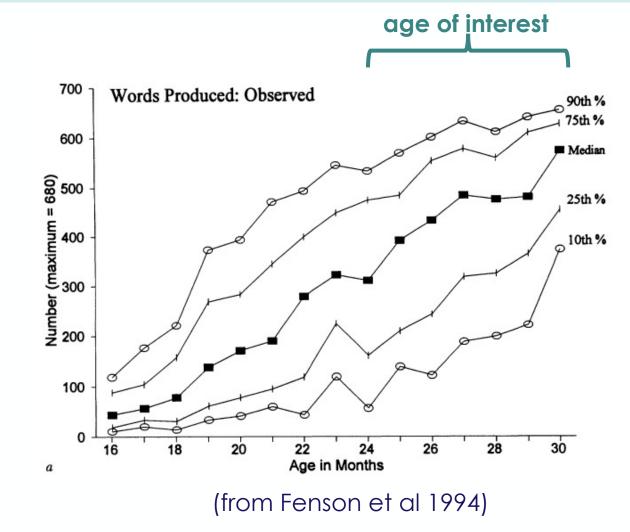
(Chan 2008, Lignos & Yang 2016)



(data from Payne et al 2021, Belth et al 2021, Payne 2022, and Payne 2023)

Input Sparsity: Early Vocabulary

- At 2;0: 200-500 words crosslinguistically
- At 3;0: <1000 words crosslinguistically
- Early vocabulary makeup:
 - ~50% **nouns**
 - ~25% verbs
- More **frequent** words learned earlier



Bornstein et al. (2004)

Input Sparsity: Summary

- Children must generalize from small, sparse input
 - From a **few hundred** of the **most-frequent** forms
 - To unseen **lemmas**
 - To unseen feature sets, especially in highly-inflected languages

Input Sparsity: Summary

- Children must generalize from small, sparse input
- Previous training data: too much, too saturated
 - Kirov & Cotterell: > 3,500 verbs in entire paradigm
 - Children know < **350** verbs at 3;0
 - Would need to see > 15k lemmas to see 3,500 in entire paradigm

Previous training data: sampled uniformly from UniMorph

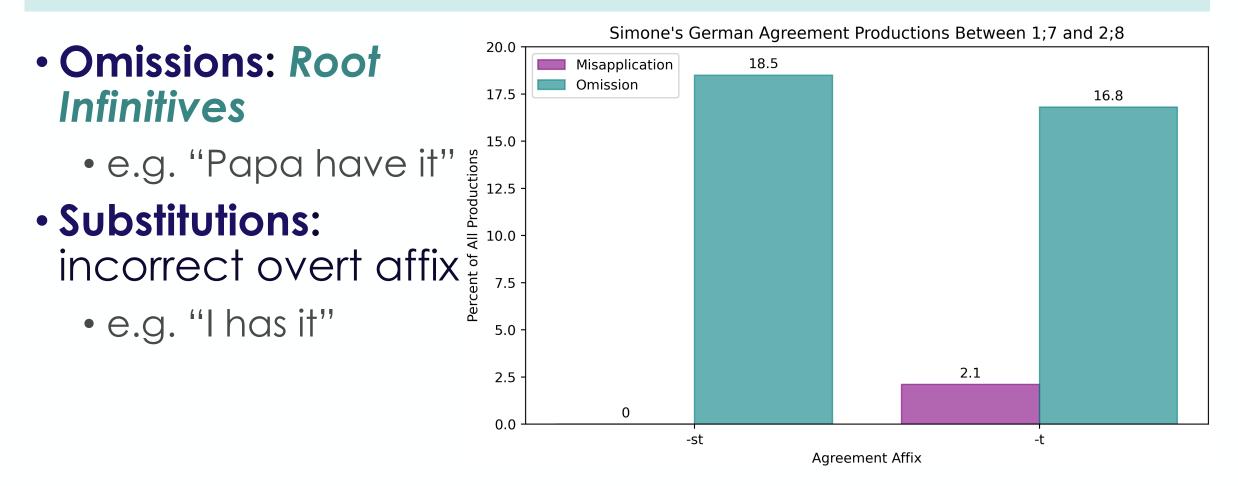
- Kirov & Cotterell, SIGMORPHON shared task, etc.
- Unnatural **bias towards low-frequency** items
- Frequency correlated with **irregularity** and **order of acquisition**

Outline

Background

- Defining the task
- Input sparsity
- Developmental trajectories & error patterns
- Developmentally-grounded evaluation
- Another approach: Abduction of Tolerable Productivity
- Revisiting the train-test overlap
- Probing feature-based generalization
- Conclusions

Child Production Errors: Omissions

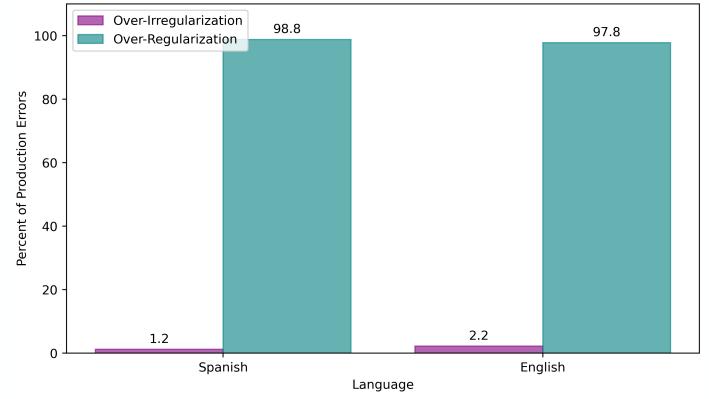


(Clahsen & Penke 1992, Philips 1995, Legate & Yang 2007)

Child Production Errors: Over-regularization

Over-regularization

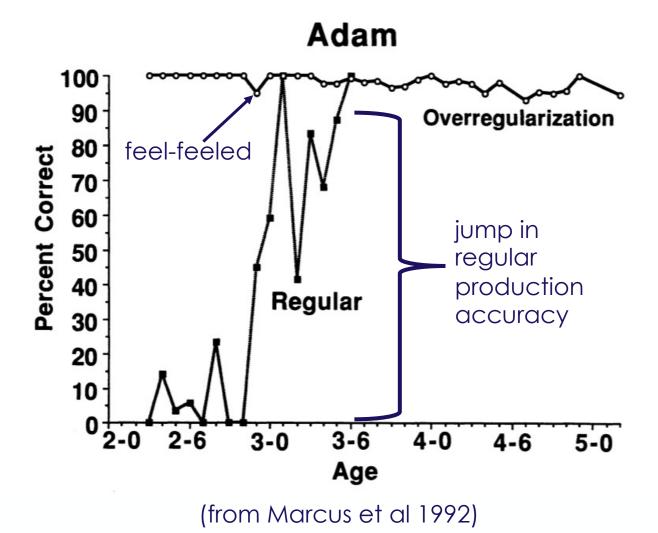
- e.g. feel-feeled
- Over-irregularization
 - e.g. bite-bote



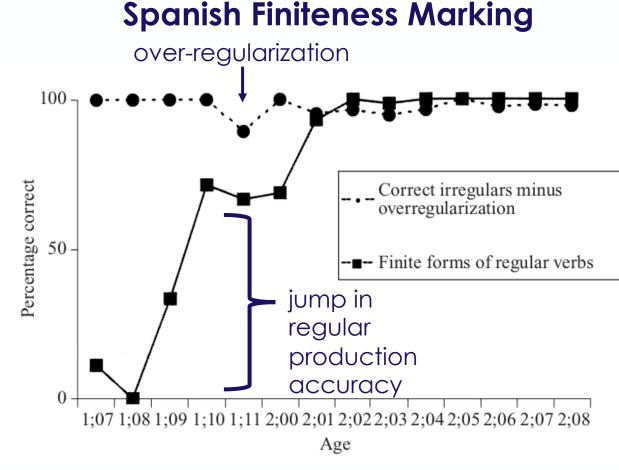
Over-regularization vs. Over-irregularization Rates

(Maslen et al 2004, Xu & Pinker 1995, Clahsen et al 2002)

Developmental Trajectories: Regression



Developmental Trajectories: Regression



(from Clahsen, Aveledo, and Roca 2002)

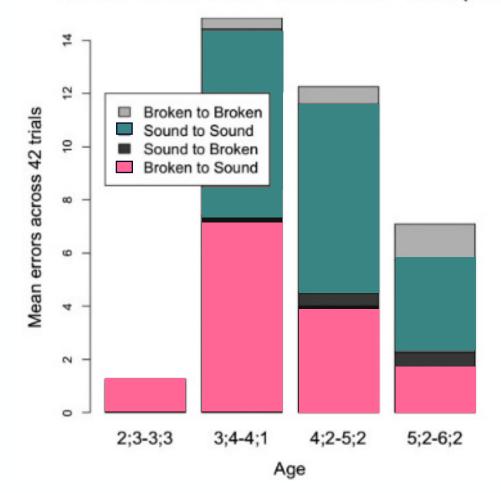
Developmental Trajectories: Regression

Two kinds of **developmental** regression for children learning Palestinian Arabic noun plurals:

 $\textbf{MASC sound} \rightarrow \textbf{Fem sound}$

Broken \rightarrow **FEM sound**

Pluralization Errors in Ravid & Farah (1999)



Outline

Background

- Defining the task
- Input sparsity
- Developmental trajectories & error patterns

Developmentally-grounded evaluation

- Another approach: Abduction of Tolerable Productivity
- Revisiting the train-test overlap
- Probing feature-based generalization
- Conclusions

Kodner, Khalifa, Payne & Liu (Cogsci, 2023)

- Do ANNs match **developmental trajectories** and **error patterns** of children?
- Detailed analysis of 3 well-studied developmental phenomena:
 - English past tense (800 train + 200 ftune)
 - Children learn English past tense on < 300 verbs
 - German noun plurals (480 train, 120 ftune)
 - Arabic noun plurals (800 train + 200 ftune)

Frequencyweighted sampling

Jordan Kodner

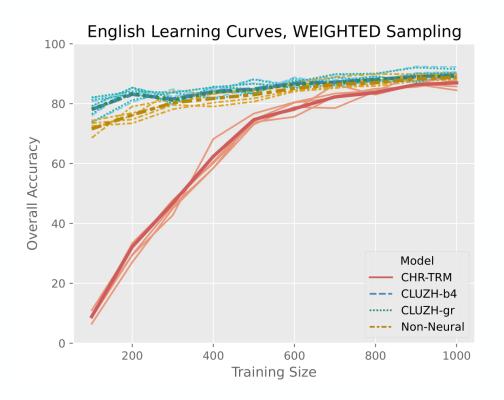
Kodner, Khalifa, Payne & Liu (Cogsci, 2023)

- Do ANNs match **developmental trajectories** and **error patterns** of children?
- Detailed analysis of 3 well-studied developmental phenomena
- 4 models:
 - CLUZH-B4: character-level transducer that significantly outperformed the 2022 SIGMORPHON baseline, with beam decoding
 - CLUZH-GR: character-level transducer with greedy decoding
 - CHR-TRM: character-level transformer that was used as a baseline in 2021 and 2022 SIGMORPHON shared tasks
 - NonNeur: non-neural baseline using a majority classifier

Wehrli et al. (2022); Wu et al. (2021); Cotterell et al. (2017)

Jordan Kodner

Model Results: English Past Tense



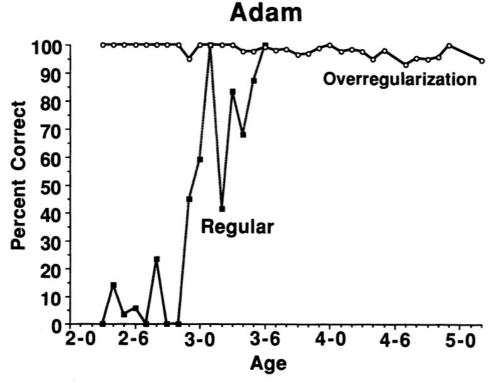
High overall accuracy

English Error Types by Training Size: cluzh-b4



error rate caused by over-irregularization

Model Results: English Past Tense



Socillation in distribution of errors

Socillation is not developmental regression, contra Kirov & Cotterell

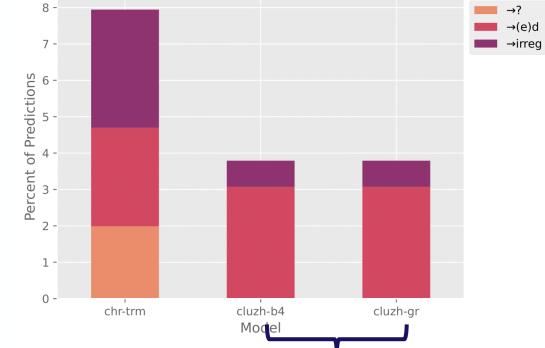
English Error Types by Training Size: cluzh-b4

No developmental regression: spike in error rate caused by over-irregularization

Model Results: English Past Tense

English Error Types by Training Size: cluzh-b4

English Error Types at 1000 by Model



More over-regularization than over-irregularization

Still proportionally more over-irregularization than expected (e.g., correspond-correspood)

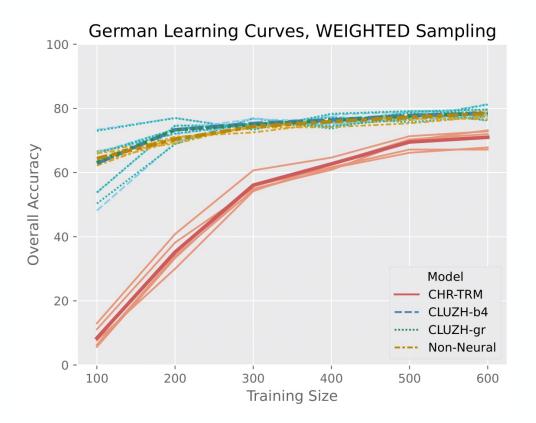
Acquisition Patterns: German Noun Plurals

- Confound in English verbs:
 - Productive -ed is by far the most frequent
- German nouns take one of 5 endings
 - Gender & stem-final segments condition affix
 - Interacts with Umlaut
 - Apparent default -s is the least frequent
- Productive use of -s appears late

Suffix	Percent
-(e)n	37.3%
-е	34.4%
-Ø	19.2%
-er	2.0%
-S	4.0%
other	2.1%

Kopcke (1998); Marcus et al. (1995); Szagun (2001); Elsen (2002); Sonnenstuhl & Huth (2002); Corkerey et al. (2019)

Model Results: German Noun Plurals

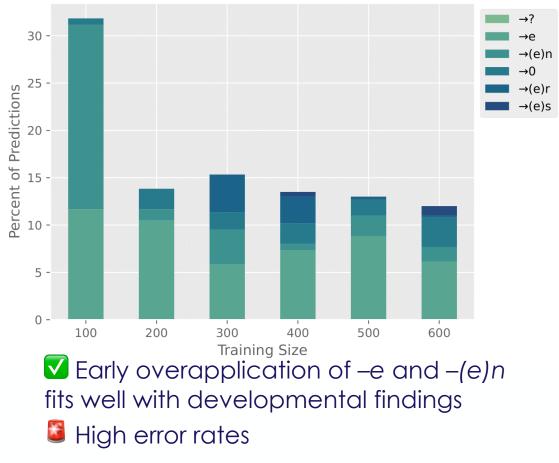


Lower accuracy than English

Gawlitzek-Maiwald (1994); Elsen (2002)

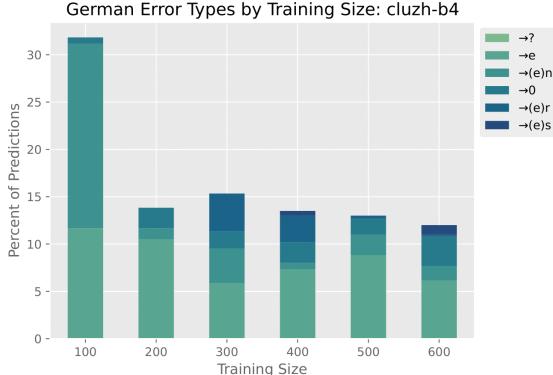
MIT BCS 04/19/24

Payne: Morphological Generalization by Children & Computers



German Error Types by Training Size: cluzh-b4

Model Results: German Noun Plurals



→? 14 →(e)n **→**0 12 →(e)r Percent of Predictions →(e)s 10 8 6 4 2 -0 cluzh-b4 cluzh-gr chr-trm Model

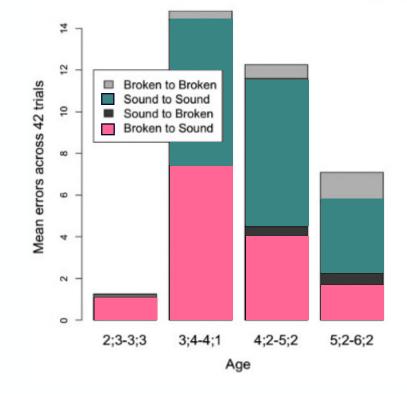
German Error Types at 600 by Model

Some over-application of -s is present for all systems on full train

Learning trajectories roughly as expected

Acquisition Patterns: Arabic Noun Plurals

- Two plural types:
 - Sound plurals take a suffix MASC $\rightarrow -\bar{u}n$, FEM $\rightarrow -\bar{a}t$ some non-human MASC nouns take $-\bar{a}t$
 - Broken plurals undergo a stem change ~30 patterns
- Two kinds of **developmental regression**:
 - MASC sound \rightarrow FEM sound
 - Broken \rightarrow FEM sound

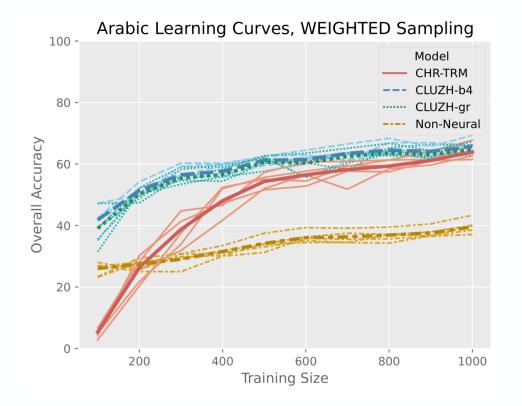


Ravid & Farrah (1999); Dawdy-Hesterberg and Pierrehumbert (2014)

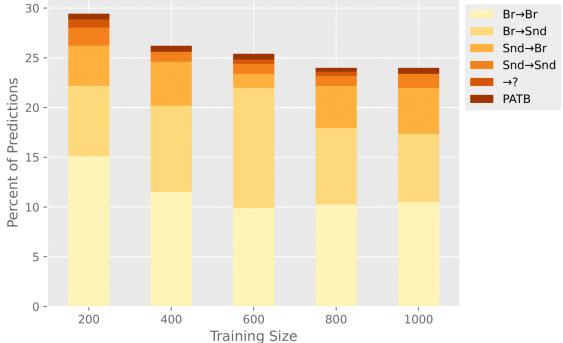
Pluralization Errors in Ravid & Farah (1999)

Payne: Morphological Generalization by Children & Computers

Model Results: Arabic Noun Plurals



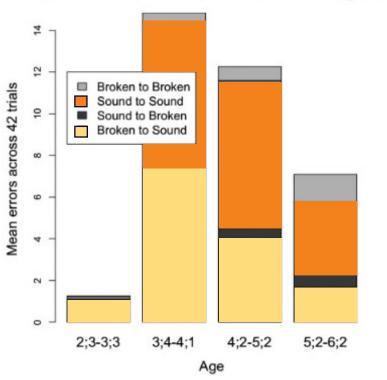
Lower accuracy than English/German



Arabic Error Types by Training Size: cluzh-b4

Event Learning is monotonic: neither type of developmental regression is observed

Model Results: Arabic Noun Plurals



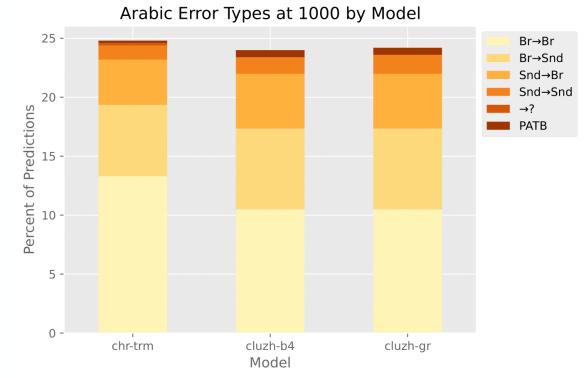
Pluralization Errors in Ravid & Farah (1999)

Example 2 Learning is monotonic: neither type of developmental regression is observed

Model Results: Arabic Noun Plurals

Sound errors relatively common

Sound \rightarrow Sound errors are rare even though they dominate developmentally



Most errors are over-irregularizations: Broken → Broken, Sound → Broken

FEM \rightarrow **MASC** errors are proportionally much more common than they are developmentally

Interim Summary

- Performance on English > German > Arabic reflects pattern complexity
- Good accuracy overall, especially considering small training
- But error patterns are not human-like
 - Far too much over-irregularization
 - No developmental regression in English or Arabic
- Current ANNs are clearly not learning morphology in the same way as humans

Outline

Background

- Defining the task
- Input sparsity
- Developmental trajectories & error patterns
- Developmentally-grounded evaluation
- Another approach: Abduction of Tolerable Productivity
- Background
- Revisiting the train-test overlap
- Probing feature-based generalization
- Conclusions

ATP: Making Sense of Production Errors

Caleb Belth

Deniz Beser

Charles Yang

Children over-regularize & don't over-irregularize

- Account for this with rule-based mappings:
 - Apply rule when no exception known
 - Over-regularization when exception not yet learned
 - Developmental regression when rule first learned

Preliminaries: The Tolerance Principle

Intuitions: given a set of N items:

- If most do X, then all do X (generalization)
- If few do X, memorize those that do (lexicalization)

Tolerance of exceptions

Generalize a rule applying to **N items** with **e exceptions** iff:

$$e \leq \theta_N = \frac{N}{\ln N}$$

Payne: Morphological Generalization by Children & Computers

ATP Model: Recursive Subdivision

• Apply TP recursively

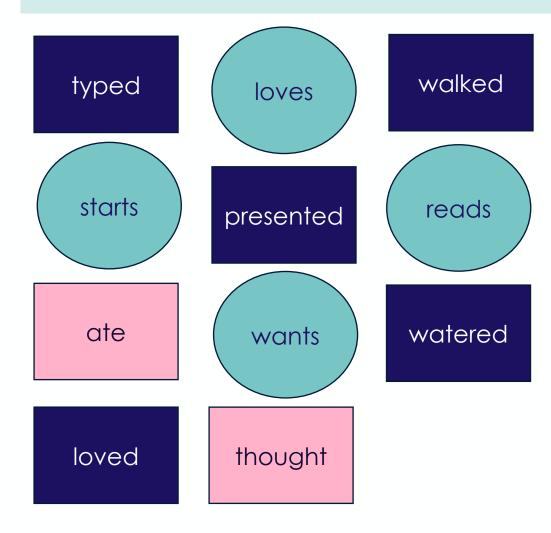
- Given N items, do enough of them take -x affix?
 - If yes, productive rule learnt!
 - If not, subdivide into disjoint subsets & recurse

• Terminate when:

- Productive rule found (generalization)
- No more subdivisions possible (lexicalization)

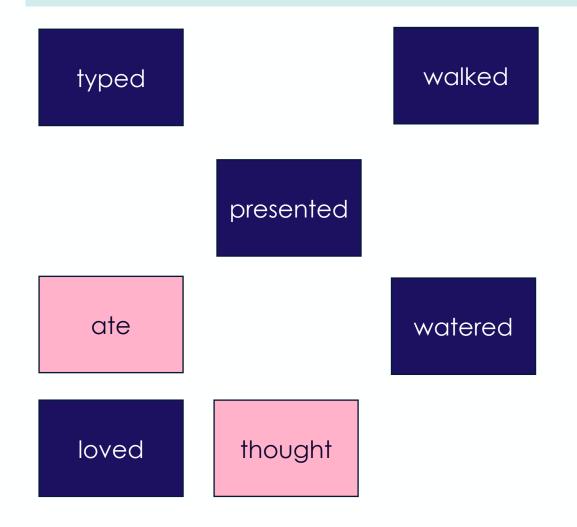
Apply to English past tense and German noun plurals

ATP Model: Toy Example



- 11 items: 4 -s, 5 -ed, 2 other
- Generalize most frequent?
 N M = 11 5 = 6 > θ₁₁ = 4.5
 Subdivide! Hypothesize a rule:

ATP Model: Toy Example

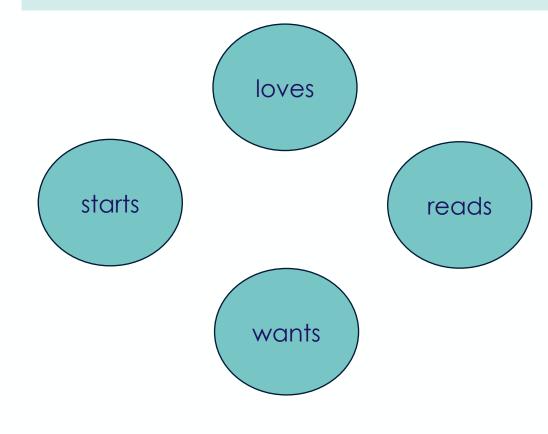


- 11 items: 4 -s, 5 -ed, 2 other
- Generalize most frequent?
 N M = 11 5 = 6 > θ₁₁ = 4.5
 Subdivide! Hypothesize a rule:
 - PAST → -ed
- Test the rule:

•
$$N-M=2<\theta_7=3.5$$

- R1 productive! PAST \rightarrow -ed
 - Memorize **ate** and **thought**

ATP Model: Toy Example



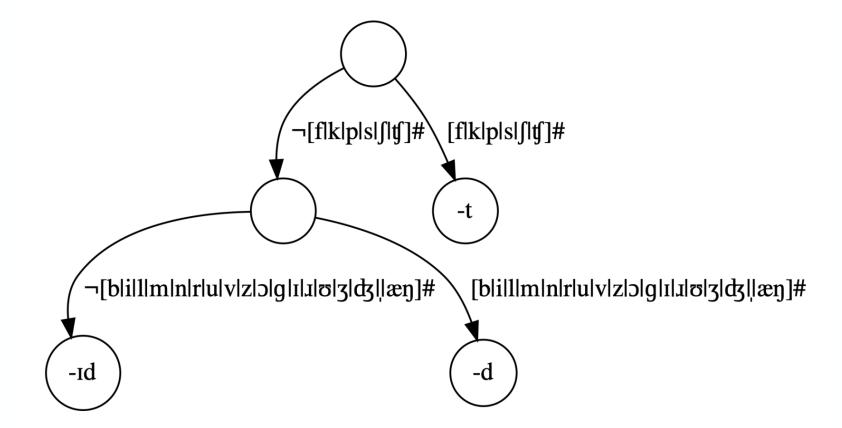
- 11 items: 4 -s, 5 -ed, 2 other
- Generalize most frequent?

 $N - M = 11 - 5 = 6 > \theta_{11} = 4.5$

- **Subdivide!** Hypothesize a rule:
 - PAST → -ed
- Test the rule:
 - $N-M=2<\theta_7=3.5$
- R1 productive! PAST \rightarrow -ed
 - Memorize **ate** and **thought**
- **Recurse:** PRES,3,SG \rightarrow -s

ATP Model: Sample learning trace

English past tense: morphophonological conditioning

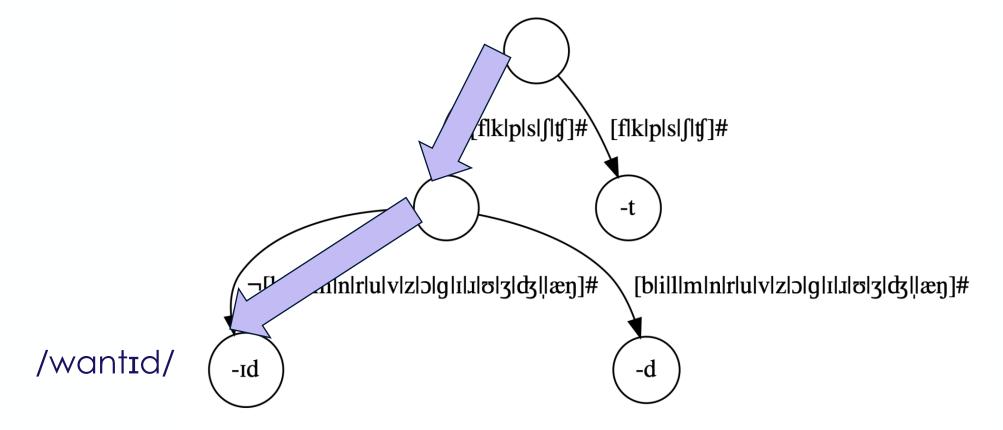


ATP Model: Inflection and Generation

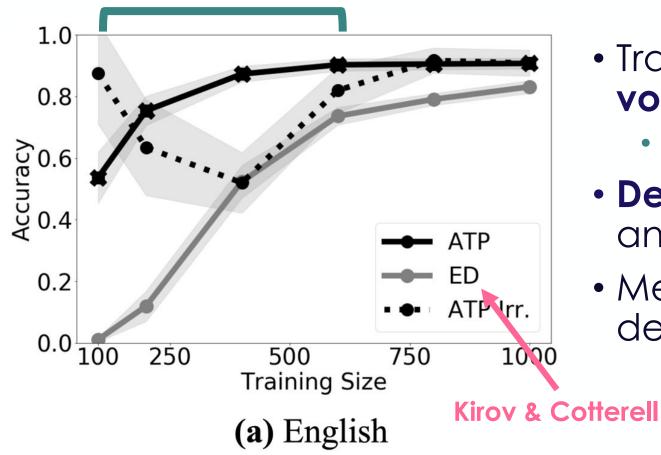
- During test, given novel forms & features to inflect
- Traverse decision tree to correct node
 - If node has productive rule, apply the rule
 - If no productive rule, either:
 - Produce unmarked form
 - Analogize to a known form at this node

ATP Model: Sample learning trace

English past tense: inflect /want/



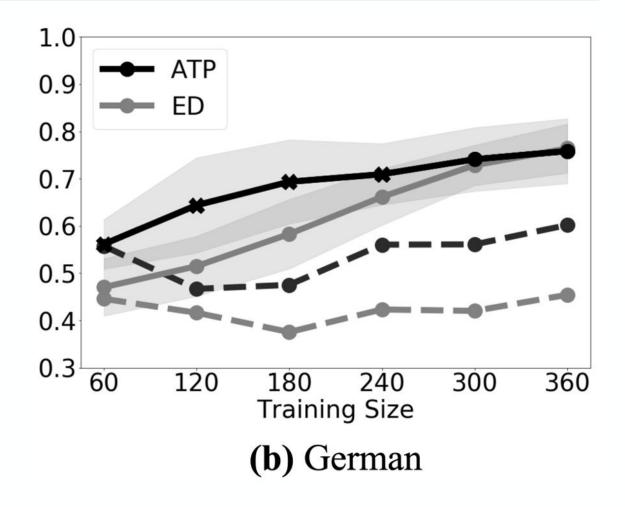
ATP: English Results



- Trained on **plausible vocabulary**
 - 1000 inflected forms
- Developmental regression and overregularization
- Mechanistic account of developmental regression

ATP: German Results

- Trained on **plausible vocabulary**
 - 400 inflected forms
- Relies less on gender than K&C ⇒ more human-like
 - Solid lines = gender info given at test
 - **Dashed lines** = gender info not given at test



ATP: Summary

- Evaluated on sparse, skewed input
- Evaluation conducted over **multiple splits** and averaged
- Human-like error patterns
 - Over-regularization
 - Developmental regression

ATP gives a mechanistic account of why these errors occur and how the morphological grammar is acquired from sparse input

ATP: Future Work

• Currently:

- Incremental, online implementation
- Evaluation on more languages: Chinese, Northern East Cree, Icelandic
- Future work:
 - Feature-based generalization in ATP
 - Payne et al (2021): Spanish feature-based generalization in a similar model

Outline

Background

- Defining the task
- Input sparsity
- Developmental trajectories & error patterns

Developmentally-grounded evaluation

- Another approach: Abduction of Tolerable Productivity
- Revisiting the train-test overlap
- Probing feature-based generalization
- Conclusions

• Three shortcomings of previous evaluation practices:

- Uniform sampling & large training sets
- Uncontrolled overlap between train & test components
- Evaluation on single splits

Revisiting Train-Test Overlap

• No train triples appear in test

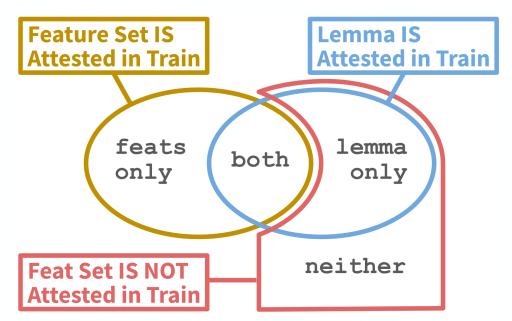
- But what about **lemmas** or **feature sets** individually?
- Four possible relationships between train & test triples:

Illustrative Train Set				Illustrative Test Set	
eat	eating	V;V.PTCP;PRS	eat	V;Pst	\leftarrow No OOV , not attested together
run	ran	V;Pst	run	V;NFIN	← Only feature set is OOV
			see	V;Pst	← Only lemma is OOV
			go	V;Prs;3;SG	← Lemma and feature set are OOV

Revisiting Train-Test Overlap

• No train triples appear in test

- But what about lemmas or feature sets individually?
- Four possible relationships between train & test triples:



Do lemma and/or feature set overlap predict performance?

Payne: Morphological Generalization by Children & Computers

- 5 Languages: German, English, Spanish, Swahili, Turkish
 - UniMorph 3 + 4 intersected with frequency info for weighted sampling
 - CHILDES for German, English, Spanish
 - Wikipedia for Swahili & Turkish

- 5 Languages: German, English, Spanish, Swahili, Turkish
- 3 Split Types:
 - UNIFORM: partition UniMorph uniformly at random
 - WEIGHTED: partition at random weighted by type frequency
 - OverlapAware: enforce a maximum 50% proportion of FEATSATTESTED

- 5 Languages: German, English, Spanish, Swahili, Turkish
- **3 Split Types:** UNIFORM, WEIGHTED, OVERLAPAWARE
- 4 Systems:
 - CLUZH-B4: character-level transducer that significantly outperformed the 2022 SIGMORPHON baseline, with beam decoding
 - CLUZH-GR: character-level transducer with greedy decoding
 - CHR-TRM: character-level transformer that was used as a baseline in 2021 and 2022 SIGMORPHON shared tasks
 - NonNeur: non-neural baseline using a majority classifier

Wehrli et al. (2022); Wu et al. (2021); Cotterell et al. (2017)

- 5 Languages: German, English, Spanish, Swahili, Turkish
- 3 Split Types: UNIFORM, WEIGHTED, OVERLAPAWARE
- 4 Systems: CLUZH-B4, CLUZH-GR, CHR-TRM, NONNEUR
- Re-splitting/re-evaluation on **5 random seeds**

Feature Overlap in Training

	SmallTrain	featsAttested	featsNovel	σ
400 train	Uniform	80.33	19.67	19.5
100 ftune -	Weighted	90.44	9.56	11.1
1000 test	OverlapAware	48.81	51.19	0.98
	LargeTrain	featsAttested	featsNovel	σ
1600 train	Uniform	96.17	3.83	5.55
400 ftune 🗖	Weighted	95.36	4.64	7.28
1000 test	OverlapAware	49.92	50.08	0.17

Feature Overlap in Training

	SmallTrain	featsAttested	featsNovel	σ
400 train	Uniform	80.33	19.67	19.5
100 ftune 🚽	Weighted	90.44	9.56	11.1
1000 test	OverlapAware	48.81	51.19	0.98
	LargeTrain	featsAttested	featsNovel	σ
1600 train	Uniform	96.17	3.83	5.55
400 ftune 🚽	Weighted	95.36	4.64	7.28
1000 test	OverlapAware	49.92	50.08	0.17

Overlap rate is high but not 100% when not controlled for **UNIFORM & WEIGHTED** are similar for large training size

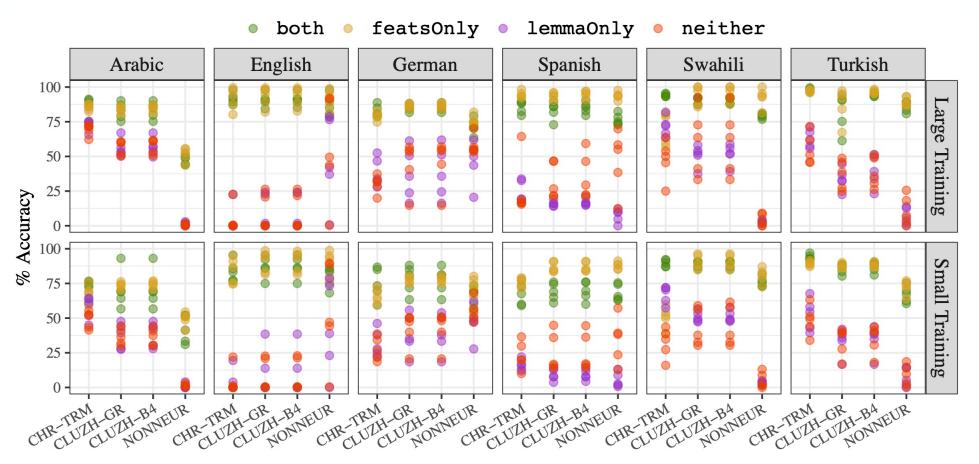
Feature Overlap in Training

_	SmallTrain	featsAttested	featsNovel	σ
400 train	Uniform	80.33	19.67	19.5
100 ftune -	Weighted	90.44	9.56	11.1
1000 test	OverlapAware	48.81	51.19	0.98
	LargeTrain	featsAttested	featsNovel	σ
1600 train	Uniform	96.17	3.83	5.55
400 ftune 🗕	Weighted	95.36	4.64	7.28
1000 test	OverlapAware	49.92	50.08	0.17

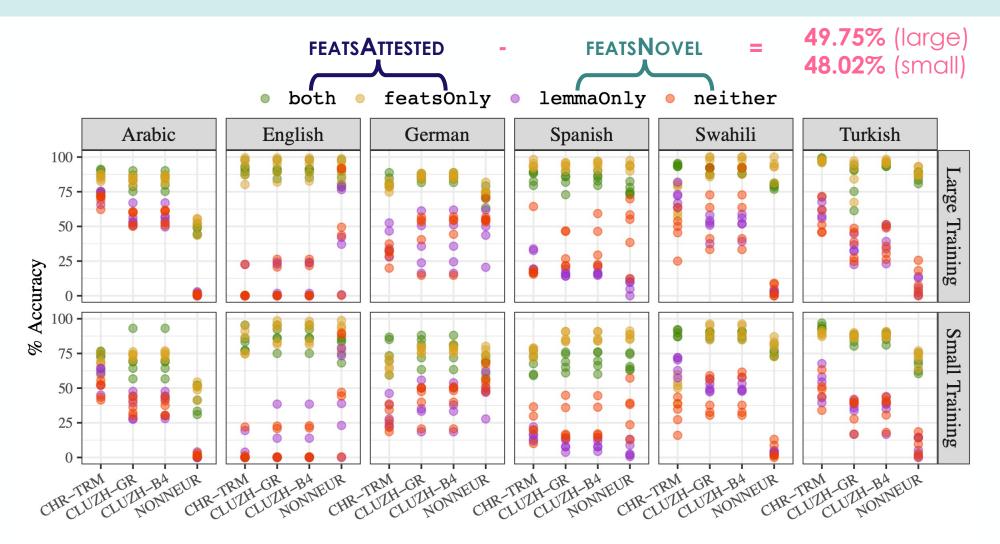
Overlap rate is highly variable across seed/language when not controlled for

Results: Effect of Overlap

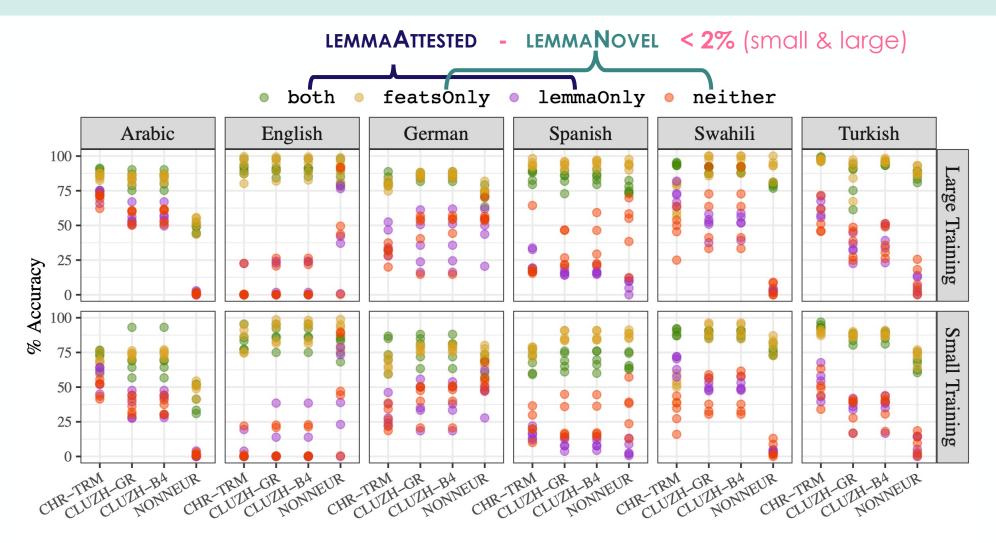
Accuracy on OVERLAPAWARE splits for each seed



Results: Effect of Feature Overlap



Results: Effect of Lemma Overlap



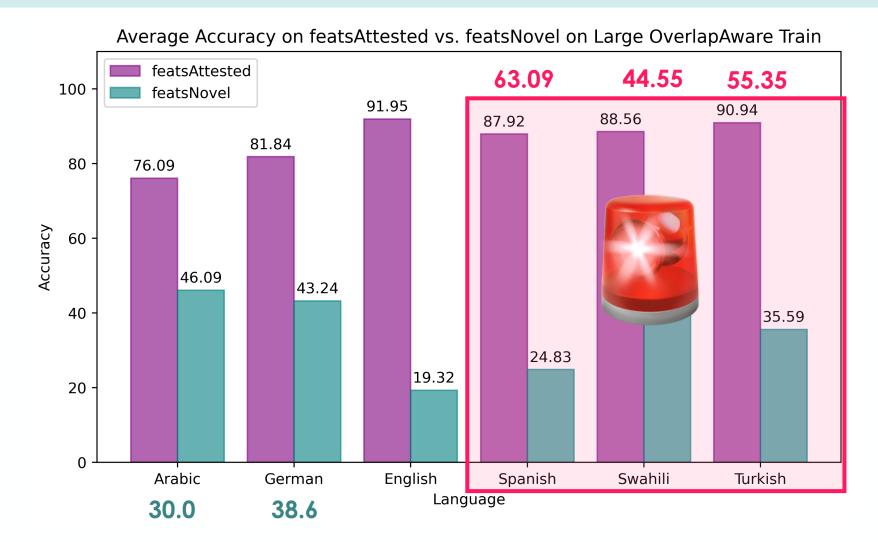
Is feature generalization realistic?

- Two factors at play: paradigm size and agglutinativity
 - Large paradigm \rightarrow yes
 - Highly agglutinative \rightarrow yes

small paradigm \rightarrow maybe not highly fusional \rightarrow no

Swahili & Turkish some Spanish

Is feature generalization realistic?



Outline

Background

- Defining the task
- Input sparsity
- Developmental trajectories & error patterns

Developmentally-grounded evaluation

- Another approach: Abduction of Tolerable Productivity
- Revisiting the train-test overlap
- Probing feature-based generalization
- Conclusions

Kodner, Khalifa, & Payne (2023, EMNLP)

- Data splits to test specific components of featurebased generalization in ANNs
 - Language-specific probes for feature-based generalizations that should be possible
 - And some that shouldn't for comparison
 - Designing these probes requires linguistic expertise

Jordan Kodner

Kodner, Khalifa, & Payne (2023, EMNLP)

- Data splits to test specific components of **feature**based generalization in ANNs
- 3 languages:
 - English (fusional)
 - Spanish (mixed)
 - Swahili (agglutinative)
 - Orthography & phonological transcription

Jordan Kodner

nearly impossible

very possible

Kodner, Khalifa, & Payne (2023, EMNLP)

- Data splits to test specific components of **featurebased generalization in ANNs**
- 3 languages: English, Spanish, Swahili
- 3 models:
 - CLUZH: character-level transducer with beam decoding
 - CHR-TRM: character-level transformer
 - ENC-DEC: Kirov & Cotterell (2018) encoder-decoder

Jordan Kodner

Wehrli et al. (2022); Wu et al. (2021); Cotterell et al. (2018)

Language-Specific Probes

- BLIND: language-independent OverlapAware sampling Verbs: English (en, fusional) - Spanish (es) - Swahili (sw, agglutinative)
- **PROBE:** random sampling testing specific **feature-based** generalizations

Agglutinative Feature Generalization Probes

- es-FUT suffixation
- es-AGGL suffixation (harder)
- sw-1PL prefixation
- sw-NON3 prefixation (harder)
- sw-FUT string infixation
- sw-PST infixation w/ distractor

Conjugational class generalization probes

es-IR suffixation es-IRAR suffixation (harder)

Fusional Feature Generalization Probes

en-NFIN	suffixation
en-PRS	suffixation
en-PRS3SG	suffixation
es-PSTPFV	suffixation
sw-PSTPFV	infix w/ distractor

Payne: Morphological Generalization by Children & Computers

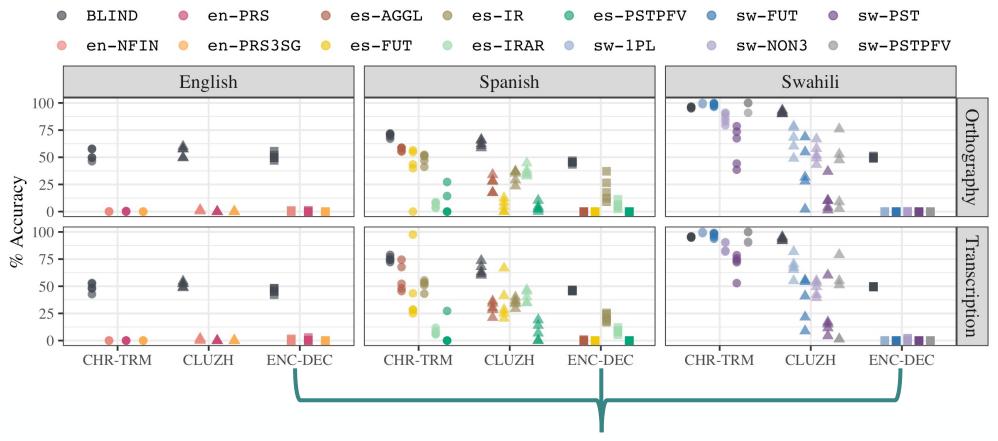
Example Probe: es-FUT

- The Spanish future tense is **agglutinative**:
 - Infinitive + person-number marking
 - Person-number marking matches most other tenses/moods

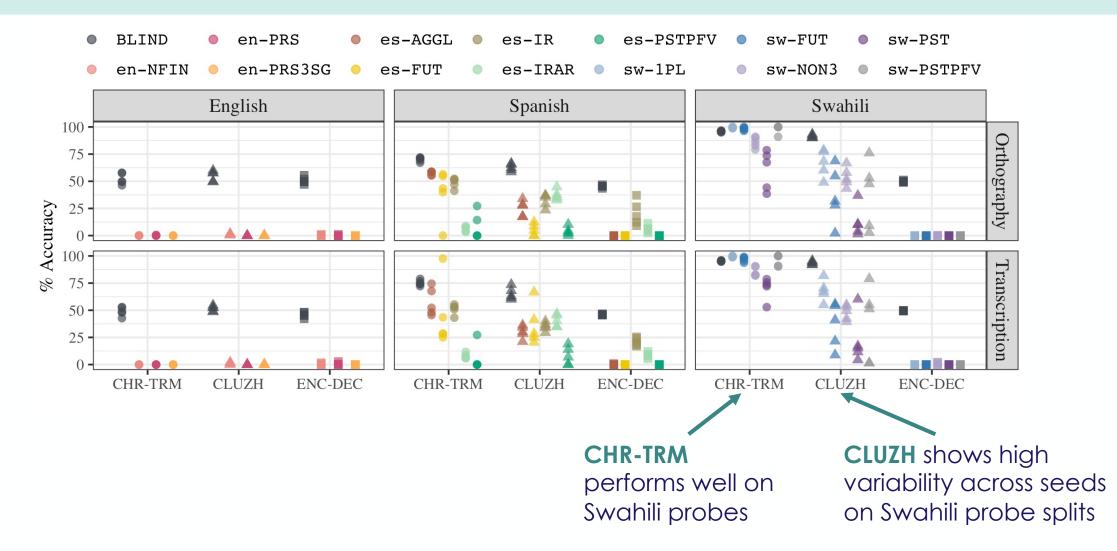
	SG	PL
1	INF+é	INF+á-mos
2;I NFM	INF+á-s	INF+á-is
2;Form	INF+á	
3	INF+á	INF+á-n

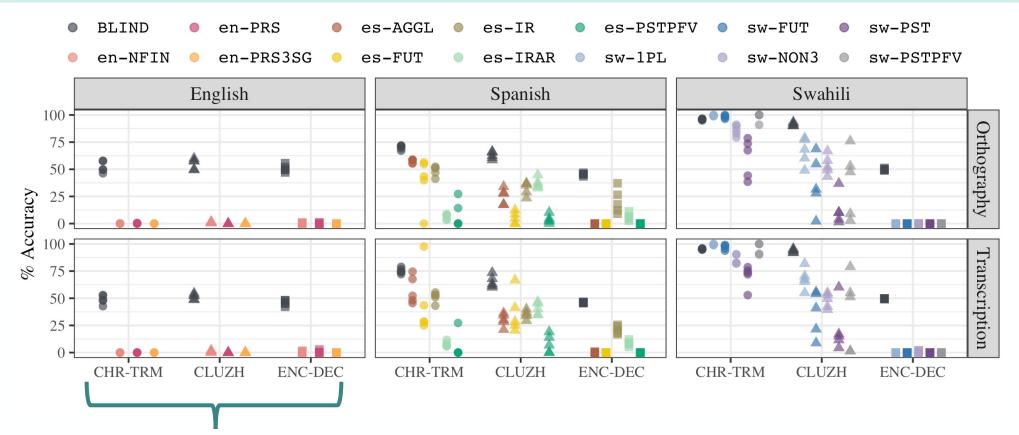
Example Probe: es-FUT

- The Spanish future tense is **agglutinative**
- For **5 random seeds**:
 - 5 of 7 person-number combinations containing V;IND;Fut are randomly withheld for test
 - Train sampling proceeds as normal except for these features
 - 1600 training + 400 ftune
 - Test sampling proceeds as normal
 - All triples that aren't relevant are **discarded from test**

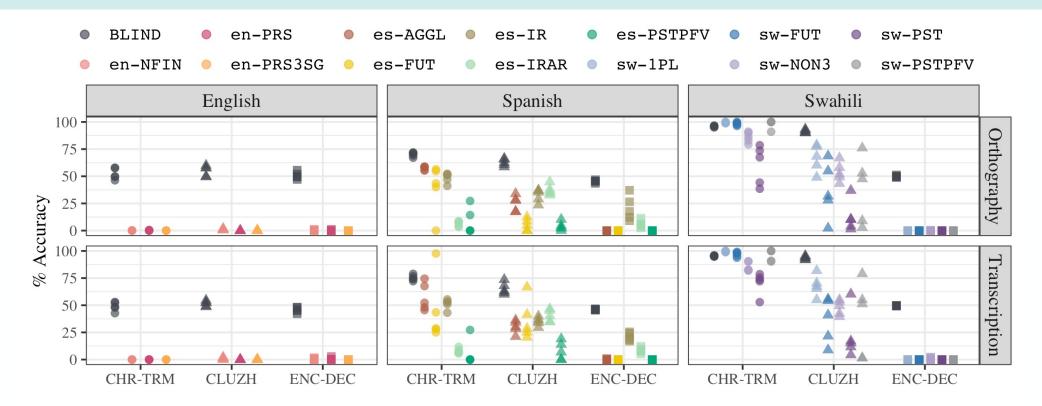


ENC-DEC only achieves meaningful performance on **es-IR** and **es-IRAR** generalize across conjugation classes but **not feature sets**





English probe splits are **intentionally impossible Errors are insightful:** no model output the bare lemma All output primarily **-ing**, **-ed**, **-es** forms



Systems succeed and fail on different probes and the types of errors they make reveal differing generalization strategies

Interim Summary

- UNIFORM and WEIGHTED sampling yield similar results
 - WEIGHTED is more cognitively-plausible
- Models tend to generalize poorly to unseen feature sets
 - Even when this should be possible in principle
 - Language-specific probes reveal systems generalize differently
- Score ranges are high across random seeds
 - Highlights importance of evaluating on multiple seeds

Outline

Background

- Defining the task
- Input sparsity
- Developmental trajectories & error patterns

Developmentally-grounded evaluation

- Another approach: Abduction of Tolerable Productivity
- Revisiting the train-test overlap
- Probing feature-based generalization
- Conclusions

Conclusions

• Morphological learning models should be evaluated:

- On realistically sparse, skewed, input Children learn from only a few hundred types!
- On multiple random splits Performance varies greatly across splits!
- On language-specific probes for feature set overlap These give specific, detailed insights into how models generalize!
- Against learning trajectories and error patterns
 Should match with children's developmental patterns!

Conclusions

- When evaluated this way, current ANNs fall short
 - Do not generalize to new feature sets when it should be possible
 - Error patterns and learning trajectories don't match children's
- BUT: more thorough evaluation helps us understand why!
 - ANNs are prone to over-irregularization
 - Current ANNs struggle to generalize across feature sets
- Rule-based models may not have these shortcomings
 - ATP makes human-like errors and exhibits developmental regression
 - When trained on **plausible data** over **multiple splits**

Thank you!!

Caleb Belth **U. of Utah**

Deniz Beser So

Salam Khalifa

Jordan Kodner

Zoey Liu **U. of FL**

Charles Yang **UPenn**

Special thanks to Jeff Heinz, Scott Nelson, Mark Aronoff, and Bob Berwick.

This work was supported by the **Institute** for Advanced Computational Science Graduate Research Fellowship and NSF Graduate Research Fellowship.

Extra Slides

Results: Effect of Feature Overlap

ρ = 0.68 (large) Correlation between proportion **FEATSATTESTED** & **accuracy**: p = 0.69 (small) both 😐 featsOnly 🛛 🔍 lemmaOnly neither 0 0 English Swahili Turkish Arabic German Spanish 100 arge 75 Training 50 25 Accuracy Small 1% 75 Training 50 25

CHR-TRM GR BA

UR TRM GR BA

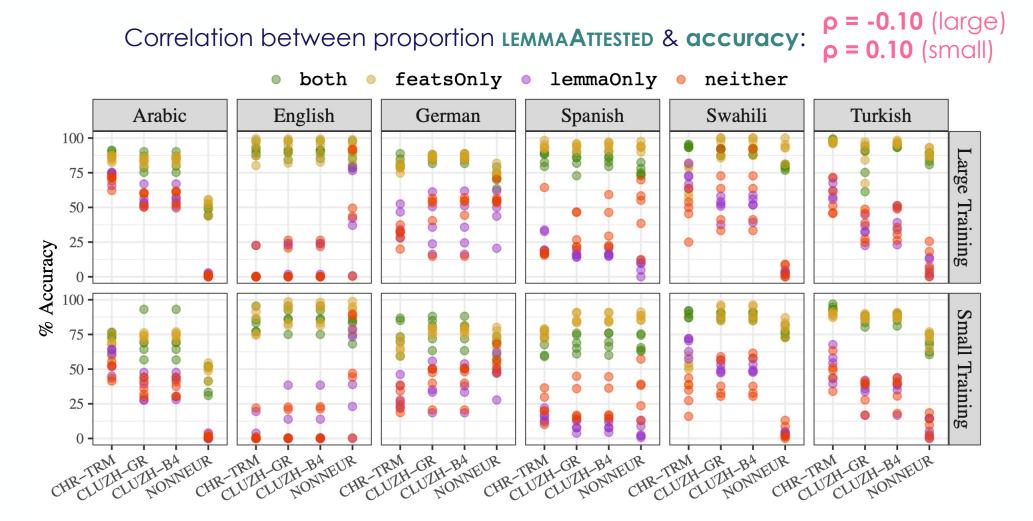
EUR TRM GR BA

UR TRM GR BA

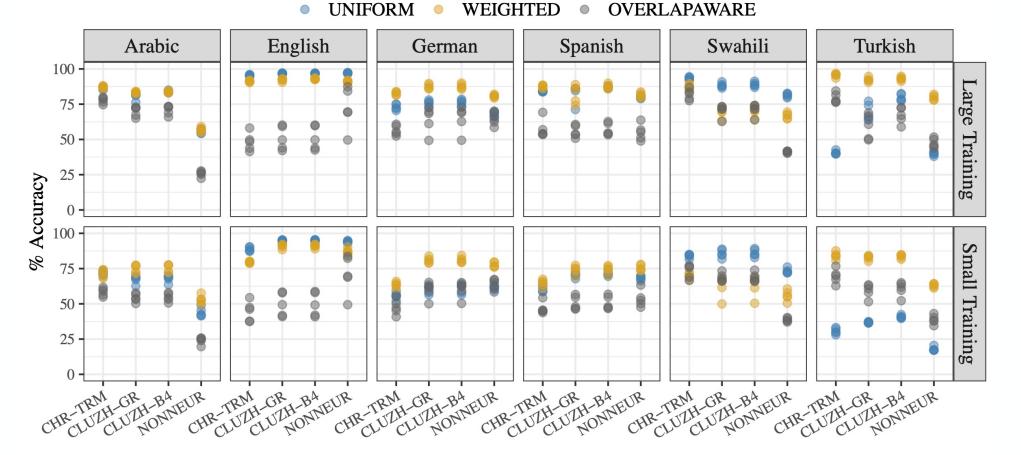
EUR TRM GR BA CHR-TIZH-GR DANNEUR CLUZH-GLUZH-NONNEUR

UR TRM GR BA

Results: Effect of Lemma Overlap



Results: Effect of Sampling Strategy



WEIGHTED (83.75%, 74.22%) > UNIFORM (79.20%, 66.16%) > OVERLAPAWARE (60.86%, 55.37%)

Variability Across Random Seeds

- Score range: highest lowest overall accuracy
- Random seed variability: standard deviation across seeds
- OVERLAPAWARE has highest variability despite consistent overlap
 - Not just feature set attestation, but which feature sets are attested

SmallTrain	Score Range	Random Seed Variability
Uniform	4.51	1.84
Weighted	6.33	2.57
OverlapAware	12.13	5.01
LargeTrain	Score Range	Random Seed Variability
LargeTrain Uniform	Score Range 3.99	Random Seed Variability 1.68

- Two factors at play: paradigm size and agglutinativity
 - Large paradigm \rightarrow yes
 - Highly agglutinative \rightarrow yes

Swahili & Turkish some Spanish small paradigm \rightarrow maybe not highly fusional \rightarrow no

Feature Set	Inflected Form
N;Acc;Sg	Ś
N;Acc;Pl	guakamoleleri
N;Dat;Sg	guakamoleye
N;DAT;PL	Ś
N;Acc;Pl;Pss3Sg	guakamolelerini
N;Dat;Pl;Pss3Sg	guakamolelerine

- Two factors at play: paradigm size and agglutinativity
 - Large paradigm \rightarrow yes
 - Highly agglutinative \rightarrow yes

Swahili & Turkish some Spanish small paradigm \rightarrow maybe not highly fusional \rightarrow no

Feature Set	Inflected Form
N;Acc;Sg	Ś
N;ACC; P L	guakamole ler i
N;DAT;SG	guakamoleye
N;DAT; P L	Ś
N;Acc; Pl ;Pss3Sg	guakamole ler ini
N;Dat; P l;Pss3Sg	guakamole ler ine

- Two factors at play: paradigm size and agglutinativity
 - Large paradigm \rightarrow yes
 - Highly agglutinative \rightarrow yes

Swahili & Turkish some Spanish small paradigm \rightarrow maybe not highly fusional \rightarrow no

Feature Set	Inflected Form
N; Acc ;Sg	Ś
N;ACC;PL	guakamole leri
N;Dat;Sg	guakamoleye
N;DAT; P L	Ś
N;Acc;Pl;Pss3SG	guakamole ler in <mark>i</mark>
N;Dat; P l;Pss3Sg	guakamole ler ine

- Two factors at play: paradigm size and agglutinativity
 - Large paradigm \rightarrow yes
 - Highly agglutinative \rightarrow yes

Swahili & Turkish some Spanish small paradigm \rightarrow maybe not highly fusional \rightarrow no

Feature Set	Inflected Form
N;Acc;Sg	Ś
N;ACC;PL	guakamole leri
N;DAT;SG	guakamole <mark>ye</mark>
N;DAT;PL	Ś
N;Acc;Pl;Pss3SG	guakamole ler in <mark>i</mark>
N; Dat;P L;Pss3SG	guakamole ler ine

- Two factors at play: paradigm size and agglutinativity
 - Large paradigm \rightarrow yes
 - Highly agglutinative \rightarrow yes

Swahili & Turkish some Spanish small paradigm \rightarrow maybe not highly fusional \rightarrow no

Feature Set	Inflected Form
N; Acc ;Sg	Ś
N;ACC;PL	guakamole leri
N;DAT;SG	guakamole ye
N;DAT;PL	Ś
N;Acc;Pl;Pss3SG	guakamole lerini
N;DAT;PL;Pss3SG	guakamole lerine

- Two factors at play: paradigm size and agglutinativity
 - Large paradigm \rightarrow yes
 - Highly agglutinative \rightarrow yes

Swahili & Turkish some Spanish small paradigm \rightarrow maybe not highly fusional \rightarrow no

Turkish guakamole Inflected FormFeature SetInflected FormN;Acc;SGguakamoleyiN;Acc;PLVakamoleleriN;Dat;SGakamoleyeN;Dat;PLkamolelereN;Acc;PL;Pss3SGguakamoleleriniN;Dat;PL;Pss3SGguakamolelerini

The Past Tense Debate

- <u>Rumelhart & McClelland</u> (1986): single-route, connectionist model can:
 - Exhibit developmental regression
 - Exhibit overregularization
 - : Rule-like behavior

• Pinker & Prince (1988): actually...

- **Developmental regression** = artifact of training data
 - First trained on **80% irregulars**
 - Then trained on **80% regulars**

- Exhibits over-irregularization
 - sip-sept, type-typeded, mailmembled
- : No rule-like behavior

Background: The Past Tense Debate Revisited

- Kirov & Cotterell (2018): encoder-decoder RNNs can overcome empirical limitations
 - Near 100% test accuracy
 - Learn several classes at once
 - Trained on developmentallyrepresentative data
 - Main errors = **overregularizations**

- Corkery et al (2019): ED model still fails empirically!
 - Predictions don't match well with humans on nonce English past tense forms
 - Still over-irregularizes!

- Massive variability in model rankings between seeds
 - Correlation with human ratings also varies massively

Background: The Past Tense Debate Revisited

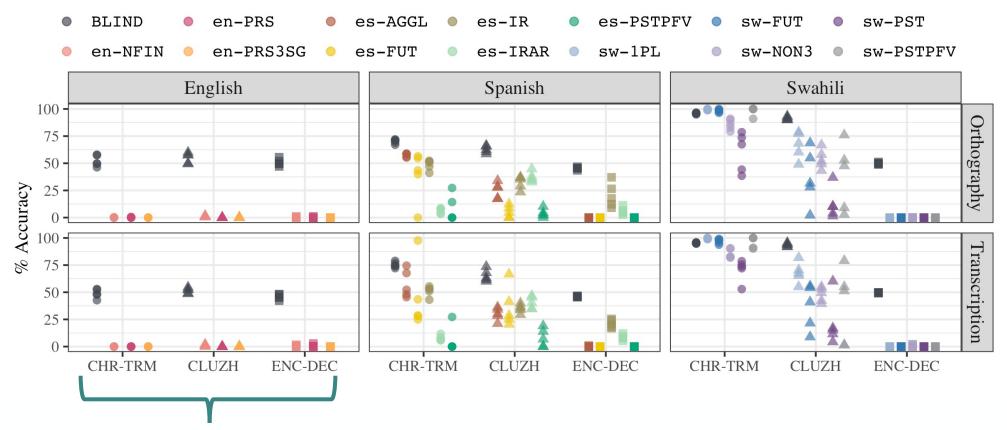
- <u>Kirov & Cotterell (2018):</u> encoder-decoder RNNs can overcome empirical limitations
 - Near 100% test accuracy
 - Learn several classes at once
 - Trained on developmentallyrepresentative data
 - Main errors = **overregularizations**

Trained on >3500 verbs in their full paradigm

- Children know < 350 verbs at 3;0
- Would need to see > 15k lemmas to see 3,500 in complete paradigm

German Noun Plurals: We really aren't there

- Marcus et al (1995): NNs overapply the most common process rather than the default
 - German: most common \neq default
- McCurdy et al (2020a): Train on German noun plurals & test on nonce words
 - Model predictions don't match well with human predictions
 - Overproduction of frequent affixes rather than default
- McCurdy et al (2020b): Model uses gender as main cue, humans use phonology



On en-PRS, CHR-TRM and CLUZH both output primarily -ing or -es, showing generalization of PRS from PRS;3SG and PRS;PRS.PTCP