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Morphological Inflection
• Patterns of word formation to express grammatical categories

• English: walk+PAST → walked
• Mandarin: 3+PL → tāmen ‘they’
• Hebrew: √ħtl+DIM+SG+DEF → haħataltul ‘the kitty’
• Latin: amic+FEM+SG+GEN → amīcae ‘the friend’s’
• Shona: bik+1SG.SUBJ+6CL.OBJ+PAST+CAUS+PASS→ ndakachibikiswa 

‘I was made to cook it’ 
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Morphological Inflection
• Patterns of word formation to express grammatical categories

• Roots/stems modified by many processes
• Suffixation/prefixation/circumfixation, stem mutations, reduplication 

• Express number, tense, mood, voice, aspect, evidentiality,…
• Common across the world’s languages

• Vary dramatically in terms of complexity or “richness” 
• Poses a learning challenge for both machines and humans 
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Morphological Inflection: Applications

• Insight into the cognitive 
computations underlying 
morphological learning 
• Past Tense Debate

• Early connectionist account 
(Rumelhart & McClelland 1986)

• Several shortcomings 
• Recent advances in ANN 

architectures
• Renewed interest in the plausibility 

of ANNs as cognitive models
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• Traditionally: downstream tasks
• In settings where pipelining is still 

common (e.g., low-resource) 
• Particularly for languages with lots 

of inflectional morphology 
• May provide insight into the 

behavior of ANN architectures
• A particular kind of string-to-string 

mapping problem 
• Varying performance may reflect 

divergent properties of different 
architectures

Cognitive Modeling Natural Language Processing



Morphological Inflection: Solved?
• Kirov & Cotterell (2018): encoder-decoder network can 

overcome practical limitations of older ANNs
• Near 100% test accuracy
• Learn several inflectional classes at once 

•  Corkerey et al. (2019): K&C model still fails empirically
• Predictions don’t match well with human nonce word judgments 

• Over-irregularizes compared to humans!

• Massive variability in model rankings between seeds 
• Correlation with human ratings also varies massively  
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🚨

🚨

🥳



Morphological Inflection: Solved?

Very good performance 
on medium and high 
training
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Best systems on a subset of the 2018 
CoNLL-SIGMORPHON shared task 

🥳



Morphological Inflection: Solved?
🚨 Performance on closely-related languages is highly variable
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Morphological Inflection 
isn’t solved!



Morphological Inflection: Outstanding Issues

• ANNs are trained on unrealistically 
large/saturated data 
• ANNs are rarely evaluated against 

child learning trajectories and 
error patterns 
• Current evaluation metrics fail to control for:
• Overlap between train and test 
• Performance variation across multiple splits
• Frequency effects in uniform sampling  
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Belth, Payne et al. (2021, Cogsci)
Kodner, Payne et al. (2023, ACL)

Kodner, Khalifa, Payne, & Liu 
(2023, Cogsci)

Kodner, Payne et al. (2023, ACL)
Kodner, Khalifa & Payne (2023, 

EMNLP)



Outline
• Background

• Defining the task
• Input sparsity 
• Developmental trajectories & error patterns

• Developmentally-grounded evaluation
• Another approach: Abduction of Tolerable Productivity 
• Revisiting the train-test overlap 
• Probing feature-based generalization
• Conclusions
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Morphological Inflection as an NLP Task
• Training: (lemma, inflected form, feature set)

• Testing: (lemma, feature set) → inflected form
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swim swam V;PST
eat eats V;PRS;3;SG
cat
…

cats
…

N;PL
…

swim ? V;PRS;3;SG
box ? N;PL
cat
…

?
…

N;SG
…



Morphological Inflection as an NLP Task
• Training: (lemma, inflected form, feature set)

• Testing: (lemma, feature set) → inflected form
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swim swam V;PST
eat eats V;PRS;3;SG
cat
…

cats
…

N;PL
…

swim swims V;PRS;3;SG
box boxes N;PL
cat
…

cat
…

N;SG
…



Outline
• Background

• Defining the task
• Input sparsity 
• Developmental trajectories & error patterns

• Developmentally-grounded evaluation
• Another approach: Abduction of Tolerable Productivity 
• Revisiting the train-test overlap 
• Probing feature-based generalization
• Conclusions

MIT BCS 04/19/24 Payne: Morphological Generalization by Children & Computers 13



Input Sparsity: Zipf’s Law 
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• Zipf’s law: word rank inversely 
proportional to frequency 

𝑓 𝑟 ∝
1
𝑟

• Consequences: 
• A few forms occur very frequently 
• Most occur very rarely (long tail) 

(data from Payne et al 2021, Belth et al 2021, Payne 2022, and Payne 2023)



Input Sparsity: Paradigm Saturation
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• Long-tailed distributions in morphology: Paradigm Saturation
• How many possible inflected forms does a lemma actually occur in?

𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 =
#	𝑠𝑒𝑒𝑛

#	𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒
Present Preterite Imperfect Conditional Future 

1SG amo amé amaba amaría amaré
2SG amas amaste amabas amarías amarás
3SG ama amó amaba amaría amará
1PL amamos amamos amábamos amaríamos amaremos
2PL amáis amasteis amabais amaríais amaréis
3PL aman amaron amaban amarían amarán

(Chan 2008, Lignos & Yang 2016)
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Input Sparsity: Paradigm Saturation
• Long-tailed distributions in morphology: Paradigm Saturation

• How many possible inflected forms does a lemma actually occur in?

𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 =
#	𝑠𝑒𝑒𝑛

#	𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒
Present Preterite Imperfect Conditional Future 

1SG amo amaba amaré
2SG amaste
3SG ama amaba
1PL amamos
2PL
3PL

=
𝟕

#	𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒

(Chan 2008, Lignos & Yang 2016)
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Input Sparsity: Paradigm Saturation
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• Long-tailed distributions in morphology: Paradigm Saturation
• How many possible inflected forms does a lemma actually occur in?

𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 =
#	𝑠𝑒𝑒𝑛

#	𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒
Present Preterite Imperfect Conditional Future 

1SG amo trabajé amaba trabajía amaré
2SG tomas amaste mirabas mirarías esperás
3SG ama esperó amaba espería tomará
1PL amamos miramos mirabamos tomaríamos miraremos
2PL tratáis
3PL esperan miraron entraban tratarían entrarán

=
𝟕

#	𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒

=
𝟕
𝟐𝟔

≈ 27%

(Chan 2008, Lignos & Yang 2016)
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Input Sparsity: Paradigm Saturation
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(data from Payne et al 2021, Belth et al 2021, Payne 2022, and Payne 2023)

lemmas 
appearing
in most of 
their 
paradigm

lemmas appearing in 
a few inflected forms



Input Sparsity: Early Vocabulary 

MIT BCS 04/19/24 Payne: Morphological Generalization by Children & Computers 1919

(from Fenson et al 1994)

• At 2;0: 200-500 words cross-
linguistically 
• At 3;0: <1000 words cross-

linguistically 
• Early vocabulary makeup:

• ~50% nouns
• ~25% verbs

• More frequent words 
learned earlier

age of interest

Bornstein et al. (2004)



Input Sparsity: Summary
• Children must generalize from small, sparse input

• From a few hundred of the most-frequent forms
• To unseen lemmas
• To unseen feature sets, especially in highly-inflected languages 
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Input Sparsity: Summary
• Children must generalize from small, sparse input
• Previous training data: too much, too saturated

• Kirov & Cotterell: > 3,500 verbs in entire paradigm
• Children know < 350 verbs at 3;0 
• Would need to see > 15k lemmas to see 3,500 in entire paradigm

• Previous training data: sampled uniformly from UniMorph
• Kirov & Cotterell, SIGMORPHON shared task, etc. 
• Unnatural bias towards low-frequency items
• Frequency correlated with irregularity and order of acquisition
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🚨

🚨
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Child Production Errors: Omissions

MIT BCS 04/19/24 Payne: Morphological Generalization by Children & Computers 23

•Omissions: Root 
Infinitives
• e.g. “Papa have it”

• Substitutions: 
incorrect overt affix
• e.g. “I has it”

(Clahsen & Penke 1992, Philips 1995, Legate & Yang 2007)



Child Production Errors: Over-regularization
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•Over-regularization
• e.g. feel-feeled

•Over-irregularization
• e.g. bite-bote 

(Maslen et al 2004, Xu & Pinker 1995, Clahsen et al 2002)
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Developmental Trajectories: Regression

CUNY 3/1/23 25

(from Marcus et al 1992)

jump in 
regular 
production 
accuracy

feel-feeled
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Developmental Trajectories: Regression

26

(from Clahsen, Aveledo, and Roca 2002)

jump in 
regular 
production 
accuracy

over-regularization
Spanish Finiteness Marking



Developmental Trajectories: Regression
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Two kinds of developmental 
regression for children learning 
Palestinian Arabic noun plurals:

MASC sound → FEM sound
Broken → FEM sound 
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Kodner, Khalifa, Payne & Liu (Cogsci, 2023)
• Do ANNs match developmental trajectories and 

error patterns of children? 
• Detailed analysis of 3 well-studied developmental 

phenomena: 
• English past tense (800 train + 200 ftune) 

• Children learn English past tense on < 300 verbs

• German noun plurals (480 train, 120 ftune)
• Arabic noun plurals (800 train + 200 ftune) 
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Frequency-
weighted 
sampling

Zoey Liu

Salam Khalifa

Jordan Kodner



Kodner, Khalifa, Payne & Liu (Cogsci, 2023)
• Do ANNs match developmental trajectories and 

error patterns of children? 
• Detailed analysis of 3 well-studied developmental 

phenomena
• 4 models:

• CLUZH-B4: character-level transducer that significantly outperformed 
the 2022 SIGMORPHON baseline, with beam decoding

• CLUZH-GR: character-level transducer with greedy decoding
• CHR-TRM: character-level transformer that was used as a baseline in 

2021 and 2022 SIGMORPHON shared tasks
• NONNEUR: non-neural baseline using a majority classifier
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Wehrli et al. (2022); Wu et al. (2021); Cotterell et al. (2017) Zoey Liu

Salam Khalifa

Jordan Kodner



Model Results: English Past Tense
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✅ High overall accuracy 🚨 No developmental regression: spike in 
error rate caused by over-irregularization



Model Results: English Past Tense
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🚨 No developmental regression: spike in 
error rate caused by over-irregularization

🚨 Oscillation in distribution of errors

🚨 Oscillation is not developmental regression, 
contra Kirov & Cotterell 



Model Results: English Past Tense
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✅ More over-regularization than over-irregularization

🚨 Still proportionally more over-irregularization than 
expected (e.g., correspond-correspood)



Acquisition Patterns: German Noun Plurals
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• Confound in English verbs:
• Productive -ed is by far the most frequent 

• German nouns take one of 5 endings
• Gender & stem-final segments condition affix
• Interacts with Umlaut 
• Apparent default –s is the least frequent

• Productive use of –s appears late

Suffix Percent
-(e)n 37.3%
-e 34.4%
-∅ 19.2%
-er 2.0%
-s 4.0%
other 2.1%

Kopcke (1998); Marcus et al. (1995); 
Szagun (2001); Elsen (2002); 

Sonnenstuhl & Huth (2002); Corkerey et al. (2019)



Model Results: German Noun Plurals
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Lower accuracy than English
✅ Early overapplication of –e and –(e)n 
fits well with developmental findings 

Gawlitzek-Maiwald (1994); Elsen (2002)
🚨 High error rates 



Model Results: German Noun Plurals
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✅ Some over-application of –s is present for 
all systems on full train

✅ Learning trajectories roughly as expected 



Acquisition Patterns: Arabic Noun Plurals
• Two plural types:

• Sound plurals take a suffix
MASC → –ūn, FEM → –āt
some non-human MASC nouns take –āt
• Broken plurals undergo a stem change

~30 patterns 
• Two kinds of developmental regression:

• MASC sound → FEM sound
• Broken → FEM sound 
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Ravid & Farrah (1999); Dawdy-Hesterberg and Pierrehumbert (2014)



Model Results: Arabic Noun Plurals
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🚨Learning is monotonic: neither type of 
developmental regression is observed 

Lower accuracy than English/German



Model Results: Arabic Noun Plurals
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🚨Learning is monotonic: neither type of 
developmental regression is observed 



Model Results: Arabic Noun Plurals
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🚨 Sound → Sound errors are rare even though 
they dominate developmentally 

✅ Broken → Sound errors relatively common  🚨 Most errors are over-irregularizations:
     Broken → Broken, Sound → Broken
🚨 FEM → MASC errors are proportionally much more 
common than they are developmentally  



Interim Summary
• Performance on English > German > Arabic reflects pattern 

complexity 
• Good accuracy overall, especially considering small training
• But error patterns are not human-like 

• Far too much over-irregularization
• No developmental regression in English or Arabic 

• Current ANNs are clearly not learning morphology in the same 
way as humans
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Outline
• Background

• Defining the task
• Input sparsity 
• Developmental trajectories & error patterns

• Developmentally-grounded evaluation
• Another approach: Abduction of Tolerable Productivity 
• Background
• Revisiting the train-test overlap 
• Probing feature-based generalization
• Conclusions
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ATP: Making Sense of Production Errors 
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• Children over-regularize & don’t over-irregularize
• Account for this with rule-based mappings: 
• Apply rule when no exception known
• Over-regularization when exception not yet learned
• Developmental regression when rule first learned

Caleb Belth Deniz Beser Jordan Kodner Charles Yang



Preliminaries: The Tolerance Principle 
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Tolerance of exceptions
Generalize a rule applying to N items with e exceptions iff:

𝒆 ≤ 𝜽𝑵 =
𝑵
𝐥𝐧𝑵

Intuitions: given a set of N items:
• If most do X, then all do X (generalization)
• If few do X, memorize those that do (lexicalization)

(Yang 2016)
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ATP Model: Recursive Subdivision
•Apply TP recursively
• Given N items, do enough of them take -x affix?
• If yes, productive rule learnt!
• If not, subdivide into disjoint subsets & recurse

• Terminate when:
• Productive rule found (generalization)
• No more subdivisions possible (lexicalization)

•Apply to English past tense and German noun plurals 



MIT BCS 04/19/24 Payne: Morphological Generalization by Children & Computers 46

ATP Model: Toy Example
• 11 items: 4 -s, 5 -ed, 2 other
•Generalize most frequent?
• 𝑵−𝑴 = 𝟏𝟏 − 𝟓 = 𝟔 > 𝜽𝟏𝟏 = 𝟒. 𝟓 

• Subdivide! Hypothesize a rule:
• PAST → -ed

• Test the rule: 
• 𝑵−𝑴 = 𝟐 < 𝜽𝟕 = 𝟑. 𝟓

• R1 productive! PAST → -ed
• Memorize ate and thought

• Recurse: PRES,3,SG → -s

46

wateredate

walked

loved

typed

presented

loves

reads

wants

starts

thought

🚨
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ATP Model: Toy Example
• 11 items: 4 -s, 5 -ed, 2 other
•Generalize most frequent?
• 𝑵−𝑴 = 𝟏𝟏 − 𝟓 = 𝟔 > 𝜽𝟏𝟏 = 𝟒. 𝟓 

• Subdivide! Hypothesize a rule:
• PAST → -ed

• Test the rule: 
• 𝑵−𝑴 = 𝟐 < 𝜽𝟕 = 𝟑. 𝟓 ✅

• R1 productive! PAST → -ed
• Memorize ate and thought

• Recurse: PRES,3,SG → -s

47

wateredate

walked

loved

typed

presented

thought

🚨
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ATP Model: Toy Example
• 11 items: 4 -s, 5 -ed, 2 other
•Generalize most frequent?
• 𝑵−𝑴 = 𝟏𝟏 − 𝟓 = 𝟔 > 𝜽𝟏𝟏 = 𝟒. 𝟓 

• Subdivide! Hypothesize a rule:
• PAST → -ed

• Test the rule: 
• 𝑵−𝑴 = 𝟐 < 𝜽𝟕 = 𝟑. 𝟓 ✅

• R1 productive! PAST → -ed
• Memorize ate and thought

• Recurse: PRES,3,SG → -s

48

loves

reads

wants

starts

🚨
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ATP Model: Sample learning trace
English past tense: morphophonological conditioning
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ATP Model: Inflection and Generation
•During test, given novel forms & features to 
inflect
• Traverse decision tree to correct node
• If node has productive rule, apply the rule
• If no productive rule, either: 
• Produce unmarked form
• Analogize to a known form at this node 
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ATP Model: Sample learning trace
English past tense: inflect /want/

/wantɪd/
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ATP: English Results

• Trained on plausible 
vocabulary 
• 1000 inflected forms

• Developmental regression 
and overregularization
• Mechanistic account of 

developmental regression

52

Kirov & Cotterell
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ATP: German Results
• Trained on plausible 

vocabulary 
• 400 inflected forms

• Relies less on gender than 
K&C ⇒ more human-like
• Solid lines = gender info given 

at test
• Dashed lines = gender info 

not given at test 

53
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ATP: Summary
• Evaluated on sparse, skewed input 
• Evaluation conducted over multiple splits and averaged
• Human-like error patterns

• Over-regularization
• Developmental regression

ATP gives a mechanistic account of why these errors occur and 
how the morphological grammar is acquired from sparse input



ATP: Future Work
• Currently: 

• Incremental, online implementation 
• Evaluation on more languages: Chinese, Northern East Cree, Icelandic 

• Future work: 
• Feature-based generalization in ATP 
• Payne et al (2021): Spanish feature-based generalization in a similar 

model 
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Outline
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Kodner, Payne, Khalifa & Liu (2023, ACL)

• Three shortcomings of previous evaluation practices: 
• Uniform sampling & large training sets
• Uncontrolled overlap between train & test components
• Evaluation on single splits
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Jordan Kodner Salam Khalifa Zoey Liu



Revisiting Train-Test Overlap 
• No train triples appear in test

• But what about lemmas or feature sets individually?
• Four possible relationships between train & test triples: 
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eat eating V;V.PTCP;PRS
run ran V;PST

eat V;PST ← No OOV, not attested together
run V;NFIN ← Only feature set is OOV
see V;PST ← Only lemma is OOV 
go V;PRS;3;SG ← Lemma and feature set are OOV

Illustrative Train Set Illustrative Test Set



Revisiting Train-Test Overlap 
• No train triples appear in test

• But what about lemmas or feature sets individually?
• Four possible relationships between train & test triples: 
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Do lemma and/or feature set overlap predict performance?



Kodner, Payne, Khalifa & Liu (2023, ACL)
• 5 Languages: German, English, Spanish, Swahili, Turkish

• UniMorph 3 + 4 intersected with frequency info for weighted sampling
• CHILDES for German, English, Spanish
• Wikipedia for Swahili & Turkish
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Kodner, Payne, Khalifa & Liu (2023, ACL)
• 5 Languages: German, English, Spanish, Swahili, Turkish 
• 3 Split Types:

• UNIFORM: partition UniMorph uniformly at random 
• WEIGHTED: partition at random weighted by type frequency 
• OVERLAPAWARE: enforce a maximum 50% proportion of FEATSATTESTED
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Kodner, Payne, Khalifa & Liu (2023, ACL)
• 5 Languages: German, English, Spanish, Swahili, Turkish
• 3 Split Types: UNIFORM, WEIGHTED, OVERLAPAWARE

• 4 Systems: 
• CLUZH-B4: character-level transducer that significantly outperformed 

the 2022 SIGMORPHON baseline, with beam decoding
• CLUZH-GR: character-level transducer with greedy decoding
• CHR-TRM: character-level transformer that was used as a baseline in 

2021 and 2022 SIGMORPHON shared tasks
• NONNEUR: non-neural baseline using a majority classifier
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Wehrli et al. (2022); Wu et al. (2021); Cotterell et al. (2017)



Kodner, Payne, Khalifa & Liu (2023, ACL)
• 5 Languages: German, English, Spanish, Swahili, Turkish
• 3 Split Types: UNIFORM, WEIGHTED, OVERLAPAWARE

• 4 Systems: CLUZH-B4, CLUZH-GR, CHR-TRM, NONNEUR 
• Re-splitting/re-evaluation on 5 random seeds 
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Feature Overlap in Training
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SmallTrain featsAttested featsNovel σ
Uniform 80.33 19.67 19.5
Weighted 90.44 9.56 11.1
OverlapAware 48.81 51.19 0.98
LargeTrain featsAttested featsNovel σ

Uniform 96.17 3.83 5.55
Weighted 95.36 4.64 7.28
OverlapAware 49.92 50.08 0.17

400 train
100 ftune
1000 test

1600 train
400 ftune
1000 test



Feature Overlap in Training
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SmallTrain featsAttested featsNovel σ
Uniform 80.33 19.67 19.5
Weighted 90.44 9.56 11.1
OverlapAware 48.81 51.19 0.98
LargeTrain featsAttested featsNovel σ

Uniform 96.17 3.83 5.55
Weighted 95.36 4.64 7.28
OverlapAware 49.92 50.08 0.17

400 train
100 ftune
1000 test

1600 train
400 ftune
1000 test

Overlap rate is high but not 100% when not controlled for
UNIFORM & WEIGHTED are similar for large training size  



Feature Overlap in Training
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SmallTrain featsAttested featsNovel σ
Uniform 80.33 19.67 19.5
Weighted 90.44 9.56 11.1
OverlapAware 48.81 51.19 0.98
LargeTrain featsAttested featsNovel σ

Uniform 96.17 3.83 5.55
Weighted 95.36 4.64 7.28
OverlapAware 49.92 50.08 0.17

400 train
100 ftune
1000 test

1600 train
400 ftune
1000 test

Overlap rate is highly variable across seed/language when not controlled for



Results: Effect of Overlap 
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Accuracy on OVERLAPAWARE splits for each seed



Results: Effect of Feature Overlap 
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FEATSATTESTED FEATSNOVEL- = 49.75% (large)
48.02% (small)



Results: Effect of Lemma Overlap 
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LEMMAATTESTED LEMMANOVEL- < 2% (small & large)



Is feature generalization realistic? 
• Two factors at play: paradigm size and agglutinativity 

• Large paradigm → yes  small paradigm → maybe not
• Highly agglutinative → yes highly fusional → no
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Swahili & Turkish 
some Spanish 



Is feature generalization realistic? 
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🚨

63.09 44.55 55.35

30.0 38.6



Outline
• Background

• Defining the task
• Input sparsity 
• Developmental trajectories & error patterns

• Developmentally-grounded evaluation
• Another approach: Abduction of Tolerable Productivity 
• Revisiting the train-test overlap 
• Probing feature-based generalization
• Conclusions
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Kodner, Khalifa, & Payne (2023, EMNLP)
• Data splits to test specific components of feature-

based generalization in ANNs
• Language–specific probes for feature-based 

generalizations that should be possible
• And some that shouldn’t for comparison
• Designing these probes requires linguistic expertise 
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Salam Khalifa



Kodner, Khalifa, & Payne (2023, EMNLP)
• Data splits to test specific components of feature-

based generalization in ANNs
• 3 languages:
• English (fusional)
• Spanish (mixed)
• Swahili (agglutinative)
• Orthography & phonological transcription
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Jordan Kodner

Salam Khalifa

nearly impossible

very possible



Kodner, Khalifa, & Payne (2023, EMNLP)
• Data splits to test specific components of feature-

based generalization in ANNs
• 3 languages: English, Spanish, Swahili
• 3 models:
• CLUZH: character-level transducer with beam decoding
• CHR-TRM: character-level transformer
• ENC-DEC: Kirov & Cotterell (2018) encoder-decoder
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Wehrli et al. (2022); Wu et al. (2021); Cotterell et al. (2018)



Language-Specific Probes
• BLIND: language-independent OVERLAPAWARE sampling 

Verbs: English (en, fusional) - Spanish (es) - Swahili (sw, agglutinative) 

• PROBE: random sampling testing specific feature-based 
generalizations 
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Agglutinative Feature 
Generalization Probes
 es-FUT suffixation

es-AGGL suffixation (harder) 
sw-1PL prefixation
sw-NON3 prefixation (harder)
sw-FUT string infixation
sw-PST infixation w/ distractor

Conjugational class 
generalization probes
 es-IR suffixation

es-IRAR suffixation (harder)

Fusional Feature 
Generalization Probes
 

en-NFIN suffixation
en-PRS suffixation
en-PRS3SG suffixation
es-PSTPFV suffixation
sw-PSTPFV infix w/ distractor



Example Probe: es-FUT
• The Spanish future tense is agglutinative: 
• Infinitive + person-number marking
• Person-number marking matches most other 

tenses/moods
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SG PL
1 INF+é INF+á-mos
2;INFM INF+á-s INF+á-is
2;FORM INF+á
3 INF+á INF+á-n



Example Probe: es-FUT
• The Spanish future tense is agglutinative
• For 5 random seeds:
• 5 of 7 person-number combinations containing V;IND;FUT are randomly 

withheld for test
• Train sampling proceeds as normal except for these features

• 1600 training + 400 ftune 

• Test sampling proceeds as normal
• All triples that aren’t relevant are discarded from test
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Results: Language-Specific Probes
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ENC-DEC only achieves meaningful performance on es-IR and es-IRAR
generalize across conjugation classes but not feature sets 



Results: Language-Specific Probes
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CHR-TRM 
performs well on 
Swahili probes

CLUZH shows high 
variability across seeds 
on Swahili probe splits



Results: Language-Specific Probes
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English probe splits are intentionally impossible
Errors are insightful: no model output the bare lemma
All output primarily –ing, -ed, -es forms 



Results: Language-Specific Probes
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Systems succeed and fail on different probes and the types of errors they 
make reveal differing generalization strategies  



Interim Summary
• UNIFORM and WEIGHTED sampling yield similar results

• WEIGHTED is more cognitively-plausible
• Models tend to generalize poorly to unseen feature sets

• Even when this should be possible in principle
• Language-specific probes reveal systems generalize differently

• Score ranges are high across random seeds
• Highlights importance of evaluating on multiple seeds
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Outline
• Background

• Defining the task
• Input sparsity 
• Developmental trajectories & error patterns

• Developmentally-grounded evaluation
• Another approach: Abduction of Tolerable Productivity 
• Revisiting the train-test overlap 
• Probing feature-based generalization
• Conclusions
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Conclusions
• Morphological learning models should be evaluated:

• On realistically sparse, skewed, input 
Children learn from only a few hundred types!
• On multiple random splits

Performance varies greatly across splits! 
• On language-specific probes for feature set overlap

These give specific, detailed insights into how models generalize!
• Against learning trajectories and error patterns

Should match with children’s developmental patterns!
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Conclusions
• When evaluated this way, current ANNs fall short

• Do not generalize to new feature sets when it should be possible
• Error patterns and learning trajectories don’t match children’s 

• BUT: more thorough evaluation helps us understand why!
• ANNs are prone to over-irregularization 
• Current ANNs struggle to generalize across feature sets 

• Rule-based models may not have these shortcomings
• ATP makes human-like errors and exhibits developmental regression
• When trained on plausible data over multiple splits
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Extra Slides



Results: Effect of Feature Overlap 
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Correlation between proportion FEATSATTESTED & accuracy: 
ρ = 0.68 (large)
ρ = 0.69 (small)



Results: Effect of Lemma Overlap 
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Correlation between proportion LEMMAATTESTED & accuracy: ρ = -0.10 (large)
ρ = 0.10 (small)



Results: Effect of Sampling Strategy 
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WEIGHTED (83.75%, 74.22%) > UNIFORM (79.20%, 66.16%) > OVERLAPAWARE (60.86%, 55.37%) 



Variability Across Random Seeds 
• Score range: highest – lowest overall accuracy 
• Random seed variability: standard deviation across seeds
• OVERLAPAWARE has highest variability despite consistent overlap

• Not just feature set 
attestation, but which 
feature sets are attested
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SmallTrain Score Range Random Seed Variability
Uniform 4.51 1.84
Weighted 6.33 2.57
OverlapAware 12.13 5.01

LargeTrain Score Range Random Seed Variability
Uniform 3.99 1.68
Weighted 4.08 1.66
OverlapAware 13.06 5.5



Is feature generalization realistic? 
• Two factors at play: paradigm size and agglutinativity 

• Large paradigm → yes  small paradigm → maybe not
• Highly agglutinative → yes highly fusional → no
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Swahili & Turkish 
some Spanish 

Feature Set Inflected Form
N;ACC;SG ?
N;ACC;PL guakamoleleri
N;DAT;SG guakamoleye
N;DAT;PL ?
N;ACC;PL;PSS3SG guakamolelerini
N;DAT;PL;PSS3SG guakamolelerine

Turkish guakamole 🥑



Is feature generalization realistic? 
• Two factors at play: paradigm size and agglutinativity 

• Large paradigm → yes  small paradigm → maybe not
• Highly agglutinative → yes highly fusional → no
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Swahili & Turkish 
some Spanish 

Turkish guakamole 🥑

Feature Set Inflected Form
N;ACC;SG ?
N;ACC;PL guakamoleleri
N;DAT;SG guakamoleye
N;DAT;PL ?
N;ACC;PL;PSS3SG guakamolelerini
N;DAT;PL;PSS3SG guakamolelerine



Is feature generalization realistic? 
• Two factors at play: paradigm size and agglutinativity 

• Large paradigm → yes  small paradigm → maybe not
• Highly agglutinative → yes highly fusional → no
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Swahili & Turkish 
some Spanish 

Turkish guakamole 🥑

Feature Set Inflected Form
N;ACC;SG ?
N;ACC;PL guakamoleleri
N;DAT;SG guakamoleye
N;DAT;PL ?
N;ACC;PL;PSS3SG guakamolelerini
N;DAT;PL;PSS3SG guakamolelerine



Is feature generalization realistic? 
• Two factors at play: paradigm size and agglutinativity 

• Large paradigm → yes  small paradigm → maybe not
• Highly agglutinative → yes highly fusional → no
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Swahili & Turkish 
some Spanish 

Turkish guakamole 🥑

Feature Set Inflected Form
N;ACC;SG ?
N;ACC;PL guakamoleleri
N;DAT;SG guakamoleye
N;DAT;PL ?
N;ACC;PL;PSS3SG guakamolelerini
N;DAT;PL;PSS3SG guakamolelerine



Is feature generalization realistic? 
• Two factors at play: paradigm size and agglutinativity 

• Large paradigm → yes  small paradigm → maybe not
• Highly agglutinative → yes highly fusional → no
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Swahili & Turkish 
some Spanish 

Turkish guakamole 🥑

Feature Set Inflected Form
N;ACC;SG ?
N;ACC;PL guakamoleleri
N;DAT;SG guakamoleye
N;DAT;PL ?
N;ACC;PL;PSS3SG guakamolelerini
N;DAT;PL;PSS3SG guakamolelerine



Is feature generalization realistic? 
• Two factors at play: paradigm size and agglutinativity 

• Large paradigm → yes  small paradigm → maybe not
• Highly agglutinative → yes highly fusional → no
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Swahili & Turkish 
some Spanish 

Turkish guakamole 🥑

Feature Set Inflected Form
N;ACC;SG guakamoleyi
N;ACC;PL guakamoleleri
N;DAT;SG guakamoleye
N;DAT;PL guakamolelere
N;ACC;PL;PSS3SG guakamolelerini
N;DAT;PL;PSS3SG guakamolelerine

🥳
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The Past Tense Debate
• Rumelhart & McClelland 

(1986): single-route, 
connectionist model can:
• Exhibit developmental 

regression
• Exhibit overregularization
∴ Rule-like behavior

• Pinker & Prince (1988): 
actually…
• Developmental regression = 

artifact of training data
• First trained on 80% irregulars
• Then trained on 80% regulars

• Exhibits over-irregularization
• sip-sept, type-typeded, mail-

membled
∴ No rule-like behavior

🚨

🚨
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Background: The Past Tense Debate Revisited

• Kirov & Cotterell (2018): 
encoder-decoder RNNs can 
overcome empirical limitations
• Near 100% test accuracy
• Learn several classes at once
• Trained on developmentally-

representative data
• Main errors = overregularizations

2/24/23 100

•Corkery et al (2019): ED 
model still fails empirically!
• Predictions don’t match 

well with humans on nonce 
English past tense forms
• Still over-irregularizes!

• Massive variability in model 
rankings between seeds 
• Correlation with human 

ratings also varies massively 

🚨

🚨
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Background: The Past Tense Debate Revisited

• Kirov & Cotterell (2018): 
encoder-decoder RNNs can 
overcome empirical limitations
• Near 100% test accuracy
• Learn several classes at once
• Trained on developmentally-

representative data
• Main errors = overregularizations

• No developmental 
regression! 
• Trained on >3500 verbs in 

their full paradigm 
• Children know < 350 verbs at 

3;0
• Would need to see > 15k 

lemmas to see 3,500 in 
complete paradigm

🚨

🚨



German Noun Plurals: We really aren’t there
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•Marcus et al (1995): NNs overapply the most common 
process rather than the default
• German: most common ≠ default

•McCurdy et al (2020a): Train on German noun plurals & 
test on nonce words
• Model predictions don’t match well with human predictions
• Overproduction of frequent affixes rather than default

•McCurdy et al (2020b): Model uses gender as main 
cue, humans use phonology



Results: Language-Specific Probes
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On en-PRS, CHR-TRM and CLUZH both output primarily 
–ing or –es, showing generalization of PRS from 
PRS;3SG and PRS;PRS.PTCP


