The Language or the Task Design? **Re-Evaluating** Morphological **Inflection Tasks**

Jordan Kodner Salam Khalifa Sarah Payne Zoey Liu (UFL) ATLaC April 28, 2023

Morphological Inflection

Patterns of word formation to express grammatical categories

English walk+PAST \rightarrow walkedHebrew $\sqrt{HTL+DIM+SG+DEF} \rightarrow ha-\hbar ataltúl$ the kitty'Mandarin 3+PL $\rightarrow t\bar{a}men$ 'they'Latin amic+FEM+SG+GEN $\rightarrow am\bar{i}cae$ 'the friend's'Shona bik+1SG.SUBJ+6CL.OBJ+PAST+CAUS+PASS \rightarrow ndakachibikiswa 'I was made to cook it'

- Roots/stems are modified by many processes {suf,pref,in,circum}fixation, stem mutations, reduplication...
- Express number, tense, mood, voice, aspect, evidentiality, possession, case...
- Common across world languages But vary dramatically along many dimensions of complexity
- Poses a learning challenge for both machines and humans

Training Time (lemma, inflected form, feature set) triples

swim	swam	V;PST
eat	eats	V; PRS; 3; SG
cat	cats	N;PL

Testing Time (lemma, feature set) pairs → predict the inflected forms

swim	?	V; PRS; 3; SG
box	?	N;PL
cat	?	N;SG

••• •••

Training Time (lemma, inflected form, feature set) triples

swim	swam	V;PST
eat	eats	V; PRS; 3; SG
cat	cats	N;PL

Testing Time (lemma, feature set) pairs → predict the inflected forms

swim	?	V ; PRS ; 3 ; SG	\rightarrow	swims
box	?	N;PL		
cat	?	N;SG		

••• •••

Training Time (lemma, inflected form, feature set) triples

swim	swam	V;PST
eat	eats	V; PRS; 3; SG
cat	cats	N;PL

Testing Time (lemma, feature set) pairs → predict the inflected forms

swim	?	V ; PRS ; 3 ; SG	\rightarrow	swims
box	?	N;PL	\rightarrow	boxes
cat	?	N;SG		

••• •••

Training Time (lemma, inflected form, feature set) triples

swim	swam	V;PST
eat	eats	V; PRS; 3; SG
cat	cats	N;PL

••• •••

Testing Time (lemma, feature set) pairs → predict the inflected forms

swim	?	V; PRS; 3; SG	\rightarrow	swims
box	?	N;PL	\rightarrow	boxes
cat	?	N;SG	\rightarrow	cat

- 1. Traditionally taken to be useful in downstream tasks
- At least in settings where pipelining is still a thing → low-resource settings?
- Particularly for languages with lots of inflectional morphology
- 2. May provide insight into the behavior of NN architectures
- 3. May elucidate aspects of linguistic typology
- 4. May elucidate aspects of language acquisition

- 1. Traditionally taken to be useful in downstream tasks
- At least in settings where pipelining is still a thing → low-resource settings?
- Particularly for languages with lots of inflectional morphology
- 2. May provide insight into the behavior of NN architectures
- A particular kind of string-to-string mapping problem
- Varying performance ideally reflects divergent properties of different architectures
- 3. May elucidate aspects of linguistic typology
- 4. May elucidate aspects of language acquisition

- **1. Traditionally taken to be useful in downstream tasks**
- At least in settings where pipelining is still a thing → low-resource settings?
- Particularly for languages with lots of inflectional morphology
- 2. May provide insight into the behavior of NN architectures
- A particular kind of string-to-string mapping problem
- Varying performance ideally reflects divergent properties of different architectures
- 3. May elucidate aspects of linguistic typology
- Typology systematically characterizes how languages are the same/different
- Differing performance across languages ideally identifies typological differences
- 4. May elucidate aspects of language acquisition

- 1. Traditionally taken to be useful in downstream tasks
- At least in settings where pipelining is still a thing → low-resource settings?
- Particularly for languages with lots of inflectional morphology
- 2. May provide insight into the behavior of NN architectures
- A particular kind of string-to-string mapping problem
- Varying performance ideally reflects divergent properties of different architectures
- 3. May elucidate aspects of linguistic typology
- Typology systematically characterizes how languages are the same/different
- Differing performance across languages ideally identifies typological differences
- 4. May elucidate aspects of language acquisition

A typological

issue!

- **1. Traditionally taken to be useful in downstream tasks**
- At least in settings where pipelining is still a thing → low-resource settings?
- Particularly for languages with lots of inflectional morphology
- 2. May provide insight into the behavior of NN architectures
- A particular kind of string-to-string mapping problem
- Varying performance ideally reflects divergent properties of different architectures
- 3. May elucidate aspects of linguistic typology
- Typology systematically characterizes how languages are the same/different
- Differing performance across languages ideally identifies typological differences
- 4. May elucidate aspects of language acquisition
- Acquisition formal study of how children initially learn their native languages
- Computational learners ideally point towards feasible models for human learning

1. Traditionally taken to be useful in downstream tasks

- At least in settings where pipelining is still a thing → low-re
- Particularly for languages with lots of inflectional morpho
- 2. May provide insight into the behavior of NN are
- A particular kind of string-to-string mapping problem
- Varying performance ideally reflects divergent properties of different architectures
- 3. May elucidate aspects of linguistic typology
- Typology systematically characterizes how languages are NLP informing specific
- Differing performance across languages ideally identifies t
- 4. May elucidate aspects of language acquisition
 - Acquisition formal study of how children initially learn th particular task)
 - Computational learners ideally point towards feasible models for human learning

Linguistics informing specific questions in NLP (we're cautiously optimistic for this particular task)

questions in linguistics

(we're skeptical for this

Is this task already solved?

Reported on inflection shared tasks is often near-ceiling

Accuracy of the best system on a subset of the 2018 **CoNLL-SIGMORPHON** shared task languages

Variable across systems, but really good overall on on medium and high training!

	High (10,000)	Medium (1,000)	Low (100)
Adyghe	100.00(uzh-2)	94.40(uzh-1)	90.60(ua-8)
Albanian	98.90(bme-2)	88.80(iitbhu-iiith-2)	36.40(uzh-1)
Arabic	93.70(uzh-1)	79.40(uzh-1)	45.20(uzh-1)
Armenian	96.90(bme-2)	92.80(uzh-1)	64.90(uzh-1)
Asturian	98.70(uzh-1)	92.40(iitbhu-iiith-2)	74.60(uzh-2)
Azeri	100.00(axsemantics-2)	96.00(iitbhu-iiith-2)	65.00(iitbhu-iiith-2)
Bashkir	99.90(uzh-2)	97.30(uzh-2)	77.80(iitbhu-iiith-1)
Basque	98.90(bme-2)	88.10(iitbhu-iiith-2)	13.30(uzh-1)
Belarusian	94.90(uzh-1)	70.40(uzh-1)	33.40(ua-8)
Bengali	99.00(bme-3)	99.00(uzh-2)	72.00(uzh-2)
Breton	100.00(waseda-1)	96.00(uzh-2)	72.00(uzh-1)
Bulgarian	98.30(uzh-2)	83.80(uzh-2)	62.90(ua-8)
Catalan	98.90(uzh-2)	92.80(waseda-1)	72.50(ua-8)
Classical-syriac	100.00(axsemantics-1)	100.00(axsemantics-2)	96.00(uzh-2)
Cornish	_	70.00(uzh-1)	40.00(ua-4)
Crimean-tatar	100.00(iit-varanasi-1)	98.00(uzh-2)	91.00(iitbhu-iiith-2)
Czech	94.70(uzh-1)	87.20(uzh-1)	46.50(uzh-2)
Danish	95.50(uzh-1)	80.40(uzh-1)	87.70(ua-6)
Dutch	97.90(uzh-1)	85.70(uzh-1)	69.30(ua-6)
English	97.10(uzh-2)	94.50(uzh-1)	91.80(ua-8)

Is this task already solved?

But performance on closely related languages is highly variable...

Azeri Turkish Turkmen	100.00(axsemantics-2) 98.50(uzh-2) —	96.00(iitbhu-iiith-2) 90.70(uzh-1) 98.00(iitbhu-iiith-1)	65.00(iitbhu-iiith-2) 39.50(iitbhu-iiith-2) 90.00(uzh-2)	Czech Slovak	94.70(uzh-1) 97.10(uzh-1)	87.20(uzh-1) 78.60(uzh-1)	46.50(uzh-2) 51.80(uzh-2)
Belarusian Russian Ukrainian	94.90(uzh-1) 94.40(uzh-2) 96.20(uzh-2)	70.40(uzh-1) 86.90(uzh-1) 81.40(uzh-1)	33.40(ua-8) 53.50(uzh-1) 57.10(ua-6)	Galician Portuguese	99.50(uzh-1) 98.60(uzh-2)	90.80(uzh-1) 94.80(uzh-2)	61.10(uzh-2) 75.80(uzh-2)
Finnish Ingrian Karelian	95.40(uzh-1) 	82.80(uzh-1) 92.00(uzh-2) 100.00(uzh-2)	25.70(uzh-1) 46.00(iitbhu-iiith-2) 94.00(ua-5)	Irish Scottish-gaelic	91.50(uzh-2) —	77.10(uzh-1) 94.00(iitbhu-iiith	37.70(uzh-1) 1) 74.00(iitbhu-iiith-2)
Kashubian Lower-sorbian Polish	— 97.80(uzh-1) 93.40(uzh-2)	88.00(bme-2) 85.10(uzh-1) 82.40(uzh-2)	68.00(ua-5) 54.30(ua-6) 49.40(ua-6)				
Danish Norwegian-bokm Swedish	95.50(uzh-1) aal 92.10(uzh-2) 93.30(uzh-1)	80.40(uzh-1) 84.10(uzh-1) 79.80(uzh-1)	87.70(ua-6) 90.10(ua-6) 79.00(ua-8)				

Is this task already solved?

But performance on closely related languages is highly variable...

Azeri Turkish Turkmen	100.00(axsemantics-2) 98.50(uzh-2) —	96.00(iitbhu-iiith-2) 90.70(uzh-1) 98.00(iitbhu-iiith-1	65.00(iitbhu-iiith-2) 39.50(iitbhu-iiith-2) 90.00(uzh-2)	Czech Slovak	94.70(uzh-1) 97.10(uzh-1)	87.20(uzh-1) 78.60(uzh-1)	46.50(uzh-2) 51.80(uzh-2)
Belarusian Russian Ukrainian	94.90(uzh-1) 94.40(uzh-2) 96.20(uzh-2)	70.40(uzh-1) 86.90(uzh-1) 81.40(uzh-1)	33.40(ua-8) 53.50(uzh-1) 57.10(ua-6)	Galician Portuguese	99.50(uzh-1) 98.60(uzh-2)	90.80(uzh-1) 94.80(uzh-2)	61.10(uzh-2) 75.80(uzh-2)
Finnish Ingrian Karelian	95.40(uzh-1) — —	82.80(uzh-1) 92.00(uzh-2) 100.00(uzh-2)	25.70(uzh-1) 46.00(iitbhu-iiith-2) 94.00(ua-5)	Irish Scottish-gaelic	91.50(uzh-2) —	77.10(uzh-1) 94.00(iitbhu-ii	37.70(uzh-1) ith-1) 74.00(iitbhu-iiith-2)
Kashubian Lower-sorbian Polish	— 97.80(uzh-1) 93.40(uzh-2)	88.00(bme-2) 85.10(uzh-1) 82.40(uzh-2)	68.00(ua-5) 54.30(ua-6) 49.40(ua-6)		-	ML when d	lifferent rformance,
Danish Norwegian-boki Swedish	95.50(uzh-1) maal 92.10(uzh-2) 93.30(uzh-1)	80.40(uzh-1) 84.10(uzh-1) 79.80(uzh-1)	87.70(ua-6) 90.10(ua-6) 79.00(ua-8)				oing on here?

Revisiting Train-Test Overlap

- Of course, no train triples appeared in test
- But what about lemmas or feature sets individually? Conceptually, test items have four possible licit relationships with train

Illustrative Train Set

eat	eating	V;V.PTCP;PRS
run	ran	V;PST

Illustrative Test Set

eat	V;PST	\leftarrow No OOV, not attested together
run	V;NFIN	← Only feature set is OOV
see	V;PST	← Only lemma is OOV
go	V; PRS; 3; SG	← Lemma and feature set are OOV
run	V;PST	← Train-on-test (not present)

Revisiting Train-Test Overlap

- Of course, no train triples appeared in test
- But what about lemmas or feature sets individually? Conceptually, test items have four possible licit relationships with train

Illustrative Train Set

eat eating V;V.PTCP;PRS run ran V;PST

Illustrative Test Set

eat	V;PST	\leftarrow No OOV, not attested together
run	V;NFIN	← Only feature set is OOV
see	V;PST	← Only lemma is OOV
go	V ; PRS ; 3 ; SG	← Lemma and feature set are OOV
run	V;PST	← Train-on-test (not present)

Do lemma and/or feature set overlap predict performance?

Overlaps as Performance Ceilings

Lemma Overlap% of test items with lemmas attested in trainFeature Set Overlap% of test items with feat sets attested in train

% Overlap defines the performance ceiling for a hypothetical system with zero ability to generalize along a given dimension

Overlaps as Performance Ceilings

Lemma Overlap% of test items with lemmas attested in trainFeature Set Overlap% of test items with feat sets attested in train

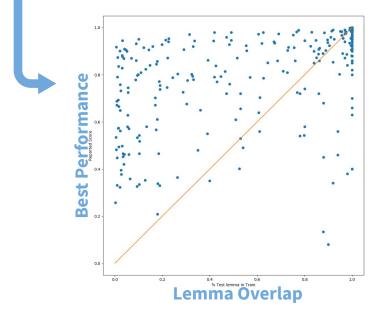
% Overlap defines the performance ceiling for a hypothetical system with zero ability to generalize along a given dimension

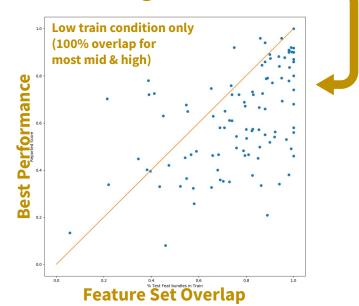
Training Size	Best Acc	Feat Set Overlap	Δ
Low (100)	39.5%	39.6 %	-0.1%
Medium (1,000)	90.7	94.1	-3.4
High (10,000)	98.5	100	-1.5

Very suspicious ceiling-like results for Turkish... Inflectional category generalization should be possible!

Overlaps as Performance Ceilings

Lemma overlap is not a ceiling; Feature set overlap is a soft ceiling Many points above the ceiling suggests good lemma generalization ability Few points above the ceiling suggests poor feature set generalization





Our Motivating Suspicions

- Cross-linguistic differences are actually primarily driven by sampling effects
 We don't know how typology relates to performance
- Train-test overlaps, especially feature set overlap leads these sampling effects
- High reported performance is due to artificially high feature set overlap
 - → Systems may not actually be generalizing like they appear too

Two Research Areas

- 1. Uncontrolled data biases → inflated/variable performance Must/how to control for lemma and feature set overlap (2022, SIGMORPHON) Must/how to also control for sampling strategy (*under review*) Must/how to also control for original corpus size (*in prep*)
- 2. Inflated/variable performance → linguistic claims unmotivated Behavior is not acquisition-like (2022, SIGMORPHON; 2023, CogSci; in prep) Alternative models (w/ Belth & Yang): (2021, SCiL; 2021, CogSci; in prep) Behavior doesn't reflect typology (2022, SIGMORPHON; under review; in prep)

Two Research Areas

- 1. Uncontrolled data biases → inflated/variable performance Must/how to control for lemma and feature set overlap (2022, SIGMORPHON) Must/how to also control for sampling strategy (*under review*) Must/how to also control for original corpus size (*in prep*)
- 2. Inflated/variable performance → linguistic claims unmotivated Behavior is not acquisition-like (2022, SIGMORPHON; 2023, CogSci; in prep) Alternative models (w/ Belth & Yang): (2021, SCiL; 2021, CogSci; in prep) Behavior doesn't reflect typology (2022, SIGMORPHON; under review; in prep)

Kodner, Khalifa, et xviii al. (SIGMORPHON 2022)

2022 SIGMORPHON Typologically Diverse Inflection Shared Task 33 languages from 10 families

Afro-Asiatic: Semitic: Arabic Hebrew Uralic: Ugric: Fir

Jgric: Finnic: Hungarian Karelian Ludian Veps

Turkic: Kipchak: ^{Kazakh}

Ludian Veps Oghuz: Turkish Austronesian: Malayo-Polynesian: Lamahalot

Chutko-Kamchatkan: North: South: Chukchi Itelmen Tungusic: North: South: Evenki Xibe Yeniseian:

Koreanic: Korean	Kartvelian: Georgian				
Indo-European:					
Armenian:	Germanic:				
E. Armenian	Gothic				
	Low German				
Old English	Middle Low German				
Old Norse	Old High German				
Indic:	Slavic:				
Assamese	Polish				
Braj	Pomak				
Kholosi	Slovak				
Magahi Gujarati	Upper Sorbian				

Kodner, Khalifa, et xviii al. (SIGMORPHON 2022)

2022 SIGMORPHON Typologically Diverse Inflection Shared Task¹

- 33 languages from 10 families
- Data from UniMorph 3/4 collection of morphological corpora²

All corpora contain (lemma, infl, feats) triples with no frequency information UniMorph

Schema and datasets for universal morphological annotation

chema Software Publications Contact

UniMorph

The Universal Morphology (UniMorph) project is a collaborative effort to improve how NLP handles complex morphology in the world's languages. The goal of UniMorph is to annotate morphological data in a universal schema that allows an inflected word from any language to be defined by its lexical meaning, typically carried by the lemma, and by a rendering of its inflectional form in terms of a bundle of morphological features from our schema. The specification of the schema is described here and in Sylak-Glassman (2016).

Plus, we're now available in a Python package! pip install unimorph

UniMorph Events

- SIGMORPHON 2022 Shared Task
- SIGMORPHON 2021 Shared Task
- SIGMORPHON 2020 Shared Task
- SIGMORPHON 2019 Shared Task
- CoNLL-SIGMORPHON 2018 Shared Task
- CoNLL-SIGMORPHON 2017 Shared Task
- SIGMORPHON 2016 Shared Task

Annotated Languages

The following 168 languages have been annotated according to the UniMorph schema. Missing parts of speech will be filled in soon.

Kodner, Khalifa, et xviii al. (SIGMORPHON 2022)

2022 SIGMORPHON Typologically Diverse Inflection Shared Task¹

- 33 languages from 10 families
- Data from UniMorph 3/4 collection of morphological corpora²
- Train-Dev-Test splits were made with overlaps in mind
- Small Train ⊂ Large Train
- Small Train-Test feature set overlap ≤50% and as close to 50% as possible Large Train-Test feature set overlap naturally approached 100%
 Lemma overlap was naturally lower when feature set overlap was controlled

	Sind(Indin	100					
	Large Train	7000					
	Dev	1000					
	Test	2000					
and as close to 50% as po							

Small Train

Size

700

Split

Submitted Systems

CLUZH Clematide, Wehrli, & Makarov

Character-level neural transducer with teacher-forcing, individual embeddings for each feature

Flexica Scherbakov & Vylomova **Extension of non-neural baseline** OSU Elsner & Court Character-level transformer augmented with exemplar model Merzhevich, Gbadegoye, Girrbach, Li, & Shim TüMorph-FST Hand-built FSTs for Chukchi, Kholosi, and Upper Sorbian 11 11 11 11 2, 11 TüMorph-Main Modification of Wu et al (2021) which predicts distributions over FST states Yang, Yang, Nicolai, & Silfverberg UBC Modification of Wu et al (2021) with hallucination **NeurBase** Wu et al (2021) **Character-level transformer** NonNeurBase same as 2021 Finds common prefixes/suffixes in lemma-inflection pairs

Submitted Systems

Clematide, Wehrli, & Makarov Character-level neural transducer with teacher-forcing, individual embeddings for each feature Scherbakov & Vylomova **Extension of non-neural baseline** Elsner & Court Character-level transformer augmented with exemplar model Merzhevich, Gbadegoye, Girrbach, Li, & Shim Hand-built FSTs for Chukchi, Kholosi, and Upper Sorbian 11 11 11 11 2, 11 Modification of Wu et al (2021) which predicts distributions over FST states Yang, Yang, Nicolai, & Silfverberg Modification of Wu et al (2021) with hallucination **NeurBase** Wu et al (2021) **Character-level transformer Baselines** NonNeurBase same as 2021

Finds common prefixes/suffixes in lemma-inflection pairs

Submitted Systems

UZH Clematide, Wehrli, & Makarov

Character-level neural transducer with teacher-forcing, individual embeddings for each feature

Flexica Scherbakov & Vylomova **Extension of non-neural baseline** Elsner & Court Character-level transformer augmented with exemplar model Merzhevich, Gbadegoye, Girrbach, Li, & Shim TüMorph-FST Hand-built FSTs for Chukchi, Kholosi, and Upper Sorbian 11 11 11 11 2, 11 Modification of Wu et al (2021) which predicts distributions over FST states Yang, Yang, Nicolai, & Silfverberg Modification of Wu et al (2021) with hallucination Wu et al (2021) **Character-level transformer** Non-neural NonNeurBase same as 2021 Finds common prefixes/suffixes in lemma-inflection pairs

Summary Results

	Small Training Condition				Large Training Condition					
System	Overall	Both	Feats	Lemma	Neither	Overall	Both	Feats	Lemma	Neither
CLUZH	56.871	77.308	77.966	31.269	43.255	67.853	90.991	87.171	41.425	60.300
Flexica	34.406	59.503	61.616	6.390	14.562	38.243	66.846	73.007	4.985	21.337
OSU	47.688*	79.310*	82.308*	8.565*	44.133*	46.734	89.565	85.308	4.843	16.768
TüM-FST	67.308*	100.00*	75.000*	55.319*	72.115*	—	—	—	—	—
TüM-M	41.591*	58.907*	62.469*	18.597*	27.613*	57.627	77.995	76.009	34.916	48.720
UBC	57.234	75.963	74.201	35.519	46.060	71.259	89.503	85.063	50.583	66.224
NeurBase	47.626	65.027	66.539	24.929	35.601	62.391	80.462	77.627	42.166	55.563
NonNeur	33.321	58.475	59.969	5.566	14.431	37.583	67.434	72.283	4.843	16.768

*OSU, TüMorph-FST, and TüMorph-Main were only TüMorph-FST, was not run on large training run on some languages in small (italicized)

Summary Results

	Small Training Condition				Large Training Condition					
System	Overall	Both	Feats	Lemma	Neither	Overall	Both	Feats	Lemma	Neither
CLUZH	56.871	77.308	77.966	31.269	43.255	67.853	90.991	87.171	41.425	60.300
Flexica	34.406	59.503	61.616	6.390	14.562	38.243	66.846	73.007	4.985	21.337
OSU	47.688*	79.310*	82.308*	8.565*	44.133*	46.734	89.565	85.308	4.843	16.768
TüM-FST	67.308*	100.00*	75.000*	55.319*	72.115*	-	-	—	-	-
TüM-M	41.591*	58.907*	62.469*	18.597*	27.613*	57.627	77.995	76.009	34.916	48.720
UBC	57.234	75.963	74.201	35.519	46.060	71.259	89.503	85.063	50.583	66.224
NeurBase	47.626	65.027	66.539	24.929	35.601	62.391	80.462	77.627	42.166	55.563
NonNeur	33.321	58.475	59.969	5.566	14.431	37.583	67.434	72.283	4.843	16.768

- All systems perform much better when test item feature sets are seen (Both, Feats Only) than when they are novel (Lemma Only, Neither)
- Overall performance on Large Training is lower than in previous years

Is generalization to unseen feature sets a reasonable expectation?

• Two linguistic dimensions at play: paradigm size and agglutinativity

Paradigm Size - Are unseen feature sets a real problem?

- Feature sets (= inflectional categories = paradigm cells) follow sparse long-tailed frequency distributions
- + For languages with paradigms with 10² or 10³ items, not all will be attested in even millions of training tokens
- For languages with small paradigms, most/all feature sets should be attested

Is generalization to unseen feature sets a reasonable expectation?

- Two linguistic dimensions at play: paradigm size and agglutinativity
- Large paradigm → yes Small paradigm → maybe not

Is generalization to unseen feature sets a reasonable expectation?

- Two linguistic dimensions at play: paradigm size and agglutinativity
- Large paradigm > yes Small paradigm > maybe not

Agglutinativity - Are feature set → form mappings predictable?

- + A perfectly agglutinative language would express each feature as its own affix (each feature maps to a morphological form)
 - → Can predict the form of the feature set from its members
- A perfectly fusional language would express each feature set as its own morphological operation (each feature set maps to a morphological form)
 - → Cannot predict the form of the feature set from its members

Is generalization to unseen feature sets a reasonable expectation?

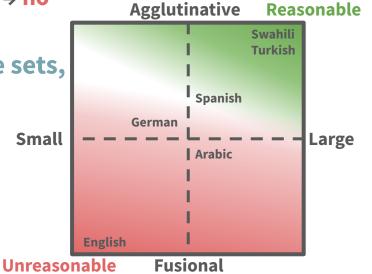
- Two linguistic dimensions at play: paradigm size and agglutinativity
- Large paradigm → yes Small paradigm → maybe not
- Highly agglutinative \rightarrow yes Highly fusional \rightarrow no

Is generalization to unseen feature sets a reasonable expectation?

- Two linguistic dimensions at play: paradigm size and agglutinativity
- Large paradigm → yes
 Small paradigm → maybe not
- Highly agglutinative → yes Highly fusional → no

If systems can generalize to unseen feature sets,

we should see a much smaller performance hit on the most agglutinative languages



Is generalization to unseen feature sets a reasonable expectation?

- Two linguistic dimensions at play: paradigm size and agglutinativity
- Large paradigm → yes Small paradigm → maybe not
- Highly agglutinative \rightarrow yes Highly fusional \rightarrow no

"Could an undergrad do it?"

Rule of thumb for if a system can be expected to do it

Is generalization to unseen feature sets a reasonable expectation?

- Two linguistic dimensions at play: paradigm size and agglutinativity
- Large paradigm → yes
 Small paradigm → maybe not
- Highly agglutinative \rightarrow yes Highly fusional \rightarrow no

	Feature Set	Inflected Form
"Could an undergrad do it?"	N;ACC;SG	?
Rule of thumb for if a system	N;ACC;PL	guakamoleleri
can be expected to do it	N;DAT;SG	guakamoleye
	N;DAT;PL	?
e.g., partial paradigm for Turkish	N;ACC;PL;PSS3S	guakamolelerini
<i>auakamole</i> 'guacamole'	N;DAT;PL;PSS3S	guakamolelerine

. . .

Is generalization to unseen feature sets a reasonable expectation?

- Two linguistic dimensions at play: paradigm size and agglutinativity
- Large paradigm → yes
 Small paradigm → maybe not
- Highly agglutinative \rightarrow yes Highly fusional \rightarrow no

"Could an undergrad do it?"

Rule of thumb for if a system can be expected to do it

e.g., partial paradigm for Turkish guakamole 'guacamole'

Feature Set	Inflected Form
N;ACC;SG	?
N;ACC;PL	guakamoleleri
N;DAT;SG	guakamoleye
N;DAT;PL	?
N;ACC;PL;PSS3S	guakamole <mark>ler</mark> ini
N;DAT;PL;PSS3S	guakamolelerine

Is generalization to unseen feature sets a reasonable expectation?

- Two linguistic dimensions at play: paradigm size and agglutinativity
- Large paradigm → yes Small paradigm → maybe not
- Highly agglutinative \rightarrow yes Highly fusional \rightarrow no

"Could an undergrad do it?"

Rule of thumb for if a system can be expected to do it

e.g., partial paradigm for Turkish guakamole 'guacamole'

Feature Set	Inflected Form
N; <mark>ACC</mark> ;SG	?
N;ACC;PL	guakamoleleri
N;DAT;SG	guakamoleye
N;DAT;PL	?
N;ACC;PL;PSS3S	guakamolelerini
N;DAT;PL;PSS3S	guakamolelerine

Is generalization to unseen feature sets a reasonable expectation?

- Two linguistic dimensions at play: paradigm size and agglutinativity
- Large paradigm → yes Small paradigm → maybe not
- Highly agglutinative \rightarrow yes Highly fusional \rightarrow no

"Could an undergrad do it?"

Rule of thumb for if a system can be expected to do it

e.g., partial paradigm for Turkish guakamole 'guacamole'

Feature Set	Inflected Form
N; <mark>ACC</mark> ;SG	?
N;ACC;PL	guakamole <mark>leri</mark>
N;DAT;SG	guakamoleye
N;DAT;PL	?
N;ACC;PL;PSS3S	guakamolelerini
N;DAT;PL;PSS3S	guakamolelerine

Is generalization to unseen feature sets a reasonable expectation?

- Two linguistic dimensions at play: paradigm size and agglutinativity
- Large paradigm → yes Small paradigm → maybe not
- Highly agglutinative \rightarrow yes Highly fusional \rightarrow no

"Could an undergrad do it?"

Rule of thumb for if a system can be expected to do it

e.g., partial paradigm for Turkish guakamole 'guacamole'

Feature Set	Inflected Form
N; <mark>ACC</mark> ;SG	?
N;ACC;PL	guakamoleleri
N;DAT;SG	guakamoleye
N;DAT;PL	?
N;ACC;PL;PSS3S	guakamolelerini
N;DAT;PL;PSS3S	guakamolelerine

Is generalization to unseen feature sets a reasonable expectation?

- Two linguistic dimensions at play: paradigm size and agglutinativity
- Large paradigm → yes
 Small paradigm → maybe not
- Highly agglutinative \rightarrow yes Highly fusional \rightarrow no

"Could an undergrad do it?"

Rule of thumb for if a system can be expected to do it

e.g., partial paradigm for Turkish guakamole 'guacamole'

Feature Set	Inflected Form
N; <mark>ACC</mark> ;SG	guakamole <mark>yi</mark>
N;ACC;PL	guakamoleleri
N;DAT;SG	guakamoleye
N;DAT;PL	guakamolelere
N;ACC;PL;PSS3S	guakamole <mark>lerini</mark>
N;DAT;PL;PSS3S	guakamole <mark>lerin</mark> e

Performance on the Most Agglutinative Languages

The Agglutinative Languages:

Chukchi, Evenki, Georgian, Hungarian, Itelmen, Karelian, Kazakh, Ket, Korean, Ludic, Mongolian, Turkish, Veps, Xibe

No system generalizes well to unseen feature sets even when they technically should be able to

Features	Small T	raining	Large T	raining
System	Seen	Novel	Seen	Novel
CLUZH	78.837	34.118	90.198	40.657
Flexica	60.885	11.386	69.173	10.094
OSU	77.800*	30.376*	88.497	13.456
TüM-FST	100.00*	17.778*	_	_
TüM-Main	61.730*	14.816*	74.667	29.433
UBC	75.994	39.232	89.213	49.799

*OSU, TüMorph-FST, and TüMorph-Main were only run on some languages in small (italicized)

Kodner, Khalifa, et xviii al. (SIGMORPHON 2022)

Conclusions

- Systems tend to generalize well to unseen lemmas, poorly to feature sets
 Overlaps must be controlled for or reported separately
 - → Previous results are probably task- rather than language-dependent
- Poor feature set generalization even when the task is feasible
 - → Previously unrecognized aspect of NNs linguistic generalization abilities
 - → A practical concern for languages with large paradigms

- Quality over quantity: 5 languages that we could analyze more deeply German, English, Spanish, Swahili and Turkish verbs Swahili and Turkish are highly regular and agglutinative
- UniMorph 3+4 intersected with text for frequency information
- Uniform vs frequency-weighted vs overlap-aware sampling
- Resplitting/reevaluating on 5 random seeds
- Evaluated 4 systems from SIGMORPHON 2022

- Quality over quantity: 5 languages that we could analyze more deeply
- UniMorph 3+4 intersected with text for frequency information CHILDES for German, English, and Spanish Wikipedia for Swahili and Turkish This step also filters out some errors from UniMorph
- Uniform vs frequency-weighted vs overlap-aware sampling
- Resplitting/reevaluating on 5 random seeds
- Evaluated 4 systems from SIGMORPHON 2022

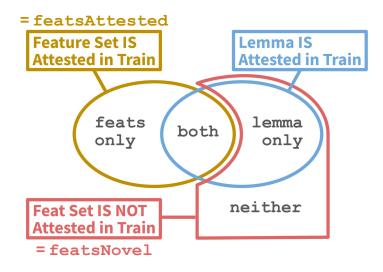
- Quality over quantity: 5 languages that we could analyze more deeply
- UniMorph 3+4 intersected with text for frequency information
- Uniform vs frequency-weighted vs overlap-aware sampling
 UNIFORM doable on raw UniMorph
 WEIGHTED more naturalistic; weighted by corpus frequency
 OVERLAPAWARE balances test items with seen and unseen feature sets
- Resplitting/reevaluating on 5 random seeds
- Evaluated 4 systems from SIGMORPHON 2022

- Quality over quantity: 5 languages that we could analyze more deeply
- UniMorph 3+4 intersected with text for frequency information
- Uniform vs frequency-weighted vs overlap-aware sampling
- Resplitting/reevaluating on 5 random seeds
 A way to assess how typical a given evaluation's results are
 Previously applied to morphological segmentation¹ Split
 Split
- Evaluated 4 systems from SIGMORPHON 2022

Split	Size
Small Train	400 + 100 finetune
Large Train	1600 + 400 finetune
Dev	500
Test	1000

- Quality over quantity: 5 languages that we could analyze more deeply
- UniMorph 3+4 intersected with text for frequency information
- Uniform vs frequency-weighted vs overlap-aware sampling
- Resplitting/reevaluating on 5 random seeds
- Evaluated 4 systems from SIGMORPHON 2022
 Clematide et al (2022) with beam decoding ← best performer with available code
 Clematide et al (2022) with greedy decoding
 Wu et al (2021)
 - **Non-Neural Baseline**

Effect of Sampling Strategy on Overlaps



Small Train	featsAttested	featsNovel	σ
UNIFORM	80.33%	19.67%	19.50
WEIGHTED	90.44	9.56	11.13
OVERLAPAWARE	48.81	51.19	0.98
Larga Train	<i>c</i>		
Large Train	featsAttested	featsNovel	σ
UNIFORM	featsAttested 96.17%	featsNovel 3.83%	σ 5.55

Effect of Sampling Strategy on Overlaps



Small Train	featsAttested	featsNovel	σ
UNIFORM	80.33%	19.67%	19.50
WEIGHTED	90.44	9.56	11.13
OVERLAPAWARE	48.81	51.19	0.98
Large Train	featsAttested	featsNovel	σ
Large Train UNIFORM	featsAttested 96.17%	featsNovel 3.83%	σ 5.55

- Overlap rate is high but not 100% when not controlled for
- Overlap rate is highly variable across seeds/languages when not controlled for
- UNIFORM and WEIGHTED are similar
- OVERLAPAWARE succeeds at its goal

Average Performance - OVERLAPAWARE

		Small Traini	ng			Large Train	ing	
Language	featsAttested	featsNovel	μ %Δ	Overall	featsAttested	featsNovel	μ%Δ	Overall
Arabic	66.14%	31.11%	-52.96	47.81%	76.09%	46.09%	-39.43	61.06%
English	88.45	18.99	-78.53	53.72	91.95	19.32	-78.99	55.63
German	74.12	41.60	-43.87	57.81	81.84	43.24	-47.17	62.54
Spanish	79.90	21.92	-72.57	50.35	87.92	24.83	-71.76	56.37
Swahili	84.79	41.75	-50.76	62.28	88.56	44.01	-50.30	66.14
Turkish	84.18	31.43	-62.66	57.03	90.94	35.59	-60.86	63.23

Average Performance - OVERLAPAWARE

		Small Traini	ng			Large Train	ing	
Language	featsAttested	featsNovel	μ %Δ	Overall	featsAttested	featsNovel	μ%Δ	Overall
Arabic	66.14%	31.11%	-52.96	47.81%	76.09%	46.09%	-39.43	61.06%
English	88.45	18.99	-78.53	53.72	91.95	19.32	-78.99	55.63
German	74.12	41.60	-43.87	57.81	81.84	43.24	-47.17	62.54
Spanish	79.90	21.92	-72.57	50.35	87.92	24.83	-71.76	56.37
Swahili	84.79	41.75	-50.76	62.28	88.56	44.01	-50.30	66.14
Turkish	84.18	31.43	-62.66	57.03	90.94	35.59	-60.86	63.23

- Performance is strictly better on Large Train than Small Train
- Language ranking by average performance is consistent on both training sizes
- But performance gap between featsAttested vs feats Novel does not improve
- Performance hit on featsNovel is not smaller for the agglutinative languages

Score Range and Standard Dev across Random Seeds

- Score ranges are large

 → Results on a single split are
 likely not representative
- Range and standard deviation OVERLAPAWARE > WEIGHTED > UNIFORM

Small Train	Score Range	σ
UNIFORM	4.51%	1.84
WEIGHTED	6.33	2.57
OVERLAPAWARE	12.13	5.01
Large Train	Score Range	σ
Large Train UNIFORM	Score Range 3.99%	σ 1.68

Main Conclusions

- UNIFORM and WEIGHTED sampling are similar, OVERLAPAWARE is adversarial Some FeatsNovel test items do appear in UNIFORM and WEIGHTED Performance is lowest on OVERLAPAWARE
- Score ranges are quite high across randoms seeds
 Performance on one random sample unlikely to reflect true performance
 High variability for OVERLAPAWARE → it matters which feature sets are in train

Ongoing Follow-Up (*in prep*)

How does the size of the original corpus affect sampling?

- All training-test splits are subsampled from pre-existing corpora
 - → Larger corpora are more downsampled that smaller corpora
 This will change expected overlaps?
- Intuition: smaller initial corpus should yield higher expected overlaps?
 → If overlaps are uncontrolled in sampling, performance should be systematically higher for languages with smaller initial corpora

Analytic and Empirical Analyses

What is the expected overlap for a given subsample?

- Same reasoning for feature set and lemma overlap
- Depends on initial corpus size

train and test size class size (# of items w/ given feature set or lemma) number of classes

Analytic and Empirical Analyses

What is the expected overlap for a given subsample?

- Same reasoning for feature set and lemma overlap
- Depends on initial corpus size

train and test size class size (# of items w/ given feature set or lemma) number of classes

- As initial corpus size grows
- # lemmas grows, but class size is constant# feature sets is constant, but class size grows

Analytic and Empirical Analyses

What is the expected overlap for a given subsample?

- Same reasoning for feature set and lemma overlap
- Depends on initial corpus size train and test size class size (# of items w/ given feature set or lemma) number of classes
- As initial corpus size grows # lemmas grows, but class size is constant # feature sets is constant, but class size grows

This can be investigated empirically and analytically

Analytic Calculation

A two-part calculation

 "How many lemmas (or feat sets) will be sampled at least once in training?" P#train(m)= from pmf for #classes drawn from a multivar. hypergeometric distr.¹

where

m = # of classes sampled
k = # class in data set
n = # of items sampled
N = # of items in data
N = vector of class sizes

$$P(m|\mathbf{N},n) = \frac{\sum_{i=1}^{m} {\binom{k-i}{k-m}} (-1)^{m-i} U(n,i,\mathbf{N})}{\binom{N}{n}}$$
$$U(n,j,\mathcal{P}(\mathbf{N})) = \sum_{X \in C_j(\mathcal{P}(\mathbf{N}))} {\binom{X}{n}}$$

 $C_j(\mathcal{P}(\mathbf{N})) = \{ \sum N_i^* \in \gamma : \gamma \subseteq \mathcal{P}(\mathbf{N}) \land |\gamma| = j \}$

Analytic Calculation

A two-part calculation

- "How many lemmas (or feat sets) will be sampled at least once in training?" P#train(m)= from pmf for #classes drawn from a multivar. hypergeometric distr.¹
 - *m* = # of classes sampled k =# class in data set *n* = # of items sampled N =# of items in data N = vector of class sizes

$$P(m|\mathbf{N},n) = \frac{\sum_{i=1}^{m} {\binom{k-i}{k-m}} (-1)^{m-i} U(n,i,\mathbf{N})}{\binom{N}{n}}$$
$$U(n,j,\mathcal{P}(\mathbf{N})) = \sum_{X \in C_j(\mathcal{P}(\mathbf{N}))} {\binom{X}{n}}$$

and

where

 $C_j(\mathcal{P}(\mathbf{N})) = \{ \sum N_i^* \in \gamma : \gamma \subseteq \mathcal{P}(\mathbf{N}) \land |\gamma| = j \}$

This becomes impractical to calculate for large N, n, and k

¹Walton (1986)

Analytic Calculation

A two-part calculation

- "How many lemmas (or feat sets) will be sampled at least once in training?"
 P#train(m)= from pmf for #classes drawn from a multivar. hypergeometric distr.¹
- "How many items in test have lemma (or feat set) overlap with train?" Partition test items into lemmaAttested/lemmaUnattested by some m → Expected proportion of test items with overlap follows bivariate hypergeometric distr.

[Final formula TBD]

Empirical Investigation

Given a corpus, train size, and test size, what is the overlap?

- Perform many UNIFORM train-test splits and calculate average overlaps
- Simulate smaller corpora by randomly removing lemmas
- Run some systems on some of these train-test splits and report performance

Empirical Investigation

Given a corpus, train size, and test size, what is the overlap?

- Perform many UNIFORM train-test splits and calculate average overlaps
- Simulate smaller corpora by randomly removing lemmas
 For a set of languages with different paradigm sizes, vary corpus size, train size, test size
 Perform many train-test splits
 Report overlaps as a function of these and make some 3D plots
- Run some systems on some of these train-test splits and report performance

Empirical Investigation

Given a corpus, train size, and test size, what is the overlap?

- Perform many UNIFORM train-test splits and calculate average overlaps
- Simulate smaller corpora by randomly removing lemmas
- Run some systems on some of these train-test splits and report performance Does overlap correlate with corpus size holding train/test size constant? Does performance correlate with corpus size holding train/test size constant?

Two Research Areas

- 1. Uncontrolled data biases → inflated/variable performance Must/how to control for lemma and feature set overlap (2022, SIGMORPHON) Must/how to also control for sampling strategy (*under review*) Must/how to also control for original corpus size (*in prep*)
- 2. Inflated/variable performance → Linguistic claims unmotivated Behavior is not acquisition-like (2022, SIGMORPHON; 2023, CogSci; in prep) Alternative models (w/ Belth & Yang): (2021, SCiL; 2021, CogSci; in prep) Behavior doesn't reflect typology (2022, SIGMORPHON; under review; in prep)

Two Research Areas

- 1. Uncontrolled data biases → inflated/variable performance Must/how to control for lemma and feature set overlap (2022, SIGMORPHON) Must/how to also control for sampling strategy (*under review*) Must/how to also control for original corpus size (*in prep*)
- 2. Inflated/variable performance → Linguistic claims unmotivated Behavior is not acquisition-like (2022, SIGMORPHON; 2023, CogSci; in prep) Alternative models (w/ Belth & Yang): (2021, SCiL; 2021, CogSci; in prep) Behavior doesn't reflect typology (2022, SIGMORPHON; under review; in prep)

2022 SIGMORPHON Acquisition-Inspired Inflection Shared Task¹

To what extent do systems show learning trajectories similar to children on child-like input?

- For NNs to be useful in studying language acquisition, they should be reasonable models of language acquisition
- One desideratum for reasonable computational cognitive models is the ability to simulate human behavior

2022 SIGMORPHON Acquisition-Inspired Inflection Shared Task¹

- Three languages with substantial literature on morphology acquisition English past tense, German noun plurals, Arabic noun plurals
- English and German data drawn from CHILDES collection of child-directed speech corpora² and intersected with UniMorph
- Arabic drawn from the Penn Arabic Treebank³ then intersected w/ UniMorph
- Train-Dev-Test splits were made with WEIGHTED sampling
- Nested train sets increase in increments of 100 to simulate developmental trajectories

2022 SIGMORPHON Acquisition-Inspired Inflection Shared Task¹

- Three languages with substantial literature on morphology acquisition
- English and German data drawn from CHILDES collection of child-directed speech corpora² and intersected with UniMorph
- Arabic drawn from the Penn Arabic Treebank³ then intersected w/ UniMorph
- Train-Dev-Test splits were made with WEIGHTED sampling
- Nested train sets increase in increments of 100 to simulate developmental trajectories

2022 SIGMORPHON Acquisition-Inspired Inflection Shared Task¹

- Three languages with substantial literature on morphology acquisition
- English and German data drawn from CHILDES collection of child-directed speech corpora² and intersected with UniMorph
- Arabic drawn from the Penn Arabic Treebank³ then intersected w/ UniMorph
- Train-Dev-Test splits were made with WEIGHTED sampling
- Nested train sets increase in increments of 100 to simulate developmental trajectories

Split	Ara	Deu	Eng
Max Train	1000	600	1000
Dev	343	500	454
Test	600	600	600

- Same three languages and acquisition phenomena Identical data for Arabic and German Used all of NA-English CHILDES
- UNIFORM VS WEIGHTED sampling
- Evaluated with 5 random seeds
- Same systems as the paper under review

- Same three languages and acquisition phenomena
- UNIFORM vs WEIGHTED sampling WEIGHTED frequency-weighted sampling better reflects acquisition setting More frequent words are more likely to be acquired earlier¹
- Evaluated with 5 random seeds
- Same systems as the paper under review

- Same three languages and acquisition phenomena
- UNIFORM VS WEIGHTED sampling
- Evaluated with 5 random seeds Similar analyses to the paper under review
- Same systems as the paper under review

- Same three languages and acquisition phenomena
- UNIFORM VS WEIGHTED sampling
- Evaluated with 5 random seeds
- Same systems as the paper under review
 - CLUZHClematide et al (2022) /w beam and greedy decodingCHR-TRMWu et al (2021)
 - Non-neural baseline

CLUZH	Clematide, Wehrli, & Makarov
HeiMorph	Ramarao, Zinova, Tang & van de Vijver
OSU	Elsner & Court
CHR-TRM	Wu et al (2021)
NonNeurBase	same as 2021

CLUZH HeiMorph OSU CHR-TRM NonNeurBas Clematide, Wehrli, & Makarov Ramarao, Zinova, Tang & van de Vijver Elsner & Court Wu et al (2021) same as 2021

Character transformer with bigram-aware halluciation

CLUZH

HeiMorph

OSU

CHR-TRM

NonNeurBase

Clematide, Wehrli, & Makarov	
Ramarao, Zinova, Tang & van d	le Vijver
Elsner & Court	
Wu et al (2021)	Same system
same as 2021	as Subtask 1

CLUZH

HeiMorph

OSU

CHR-TRM

NonNeurBase

Clematide, Wehrli, & Makarov

Ramarao, Zinova, Tang & van de Vijver Elsner & Court

Wu et al (2021)

same as 2021

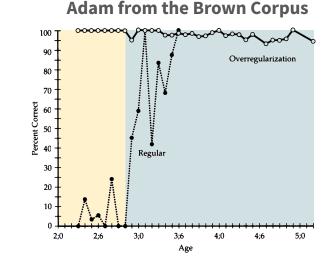
Ran these for CogSci 2023

Patterns in the Acquisition of English Past Tense

- Productive/Default -ed acquired around age 3 on a few hundred verb types¹
- Over-regularization Children apply -ed where it should not apply
 *What dat feeled?²
- Over-irregularization Order of magnitude less common *fry-frew by analogy with fly-flew Consistent asymmetry cross-linguistically³

Patterns in the Acquisition of English Past Tense

- Productive/Default -ed acquired around age 3 on a few hundred verb types¹
- **Over-regularization** Children apply -ed where it should not apply
- **Over-irregularization** Order of magnitude less common
- U-shaped learning⁴ **Performance improves, worsens, improves** Suggestions three phases in learning
 - Memorization 1
 - Learn productive -ed 2.
 - **Relearn exceptions to -ed** 3.



Patterns in the Acquisition of German Noun Plurals

- Confound in English verbs the productive ending is by far the most frequent
- German nouns take one of five endings¹
 -s is the least frequent and the productive "ending of last resort"¹
- -*e* and -Ø are acquired before -*er* and -*s*²
- Productive use of -s appears late¹
- Endings partially conditioned on gender and stem-final segments³
- Interacts with Umlaut (a kind of stem change)

Suffix*	% of all	% of NEUT
-(e)n	37.3%	3.2%
-е	34.4%	51.9%
-Ø	19.2%	21.5%
-er	2.0%	10.6%
-S	4.0%	7.7%
other	2.1%	5.1%

Patterns in the Acquisition of Arabic Noun Plurals

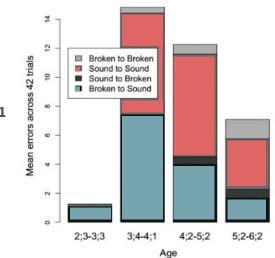
• Arabic has two plural types

Sound plurals take a suffix: MASC -ūn, FEM -āt

Broken plurals undergo a stem change: dozens of patterns

- Errors are overwhelmingly

 (MASC) sound → (FEM) sound
 Broken → (FEM) sound
 Example of the over-regularization asymmetry
- Arabic-learning children show *u*-shaped learning¹



Pluralization Errors in Ravid & Farah (1999)

Summary Results at Max Training Size (SIGMORPHON'22)

	at N=1000		at N=600			at N=1000	
System	English	Ortho	German	Suffix	Umlaut	Arabic	SfSmB
CLUZH	88.67%	91.17%	80.17%	89.00%	90.67%	65.83%	75.50%
HeiMorph	77.33	82.0	73.33	85.83	88.83	59.33	71.00
OSU	88.67	90.67	75.00	85.67	90.17	65.33	76.00

Summary Results at Max Training Size (SIGMORPHON'22)

	at N=1000)	at N=600	at N=600			at N=1000	
System	English	Ortho	German	Suffix	Umlaut	Arabic	SfSmB	
CLUZH	88.67%	91.17%	80.17%	89.00%	90.67%	65.83%	75.50%	
HeiMorph	77.33	82.0	73.33	85.83	88.83	59.33	71.00	
OSU	88.67	90.67	75.00	85.67	90.17	65.33	76.00	
		 oring minor aphic errors	Only evaluated suffix Random baseline: 20%		6		Ignoring roken errors eline: 33.3%	
	Only evaluated Umlaut Random baseline: 50%							

Summary Results at Max Training Size (SIGMORPHON'22)

	at N=1000)	at N=600			at N=1000	
System	English	Ortho	German	Suffix	Umlaut	Arabic	SfSmB
CLUZH	88.67%	91.17%	80.17%	89.00%	90.67%	65.83%	75.50%
HeiMorph	77.33	82.0	73.33	85.83	88.83	59.33	71.00
OSU	88.67	90.67	75.00	85.67	90.17	65.33	76.00
	Ignoring minor orthographic errors Only evaluated suffix Random baseline: 20%					broken-to-b Random bas	
Only evaluated Umlaut Random baseline: 50%							
Performance decreases as pattern complexity increases							

Learning Curves (CogSci'23)

Arabic German English Arabic Learning Curves, WEIGHTED Sampling German Learning Curves, WEIGHTED Sampling English Learning Curves, WEIGHTED Sampling 100 100 100 Model CHR-TRM CLUZH-b4 80 80 80 CLUZH-qr Non-Neura Overall Accuracy **Dverall Accuracy Dverall Accuracy** and the second second 60 60 60 40 40 Model Model CHR-TRM CHR-TRM 20 20 20 CLUZH-b4 CLUZH-b4 CLUZH-ar CLUZH-ar Non-Neural Non-Neura 0 1000 200 400 600 800 100 200 300 400 200 400 600 500 600 800 1000 Training Size Training Size Training Size

Thin/light lines = individual seeds

Bold/dark lines = averages across seeds

- **Non-Neural underperforms on Arabic**
- **CHR-TRM underperforms on small data**
- Noticeable but minor variability across seeds

Evaluating English Over-Regularization (SIGMORPHON'22)

What do systems do with the large-ish class of verbs ending in *-ing*?

- The goal here is not to make correct predictions, but human-like predictions
- Do they over-regularize (→ -ed)
- Or over-irregularize (analogy with irregulars)

In the training set

swing-swung
sing-sang
thing-thinged
ding-dinged
sling-slung
cling-clung

In the gold test set

sting-stung	fling-flung
ring-rang	ping-pinged
bring-brought	king-kinged
spring-sprang	string-strung

Evaluating English Over-Regularization (SIGMORPHON'22)

What do systems do with the large-ish class of verbs ending in *-ing*?

- The goal here is not to make correct predictions, but human-like predictions
- Do they over-regularize (→ -ed)
- Or over-irregularize (analogy with irregulars)

System	-ed	-ang	-ung	Other
(Gold)	2	2	3	1
CLUZH				
HeiMorph				
OSU				

Evaluating English Over-Regularization (SIGMORPHON'22)

What do systems do with the large-ish class of verbs ending in *-ing*?

- The goal here is not to make correct predictions, but human-like predictions
- Do they over-regularize (→ -ed)
- Or over-irregularize (analogy with irregulars)

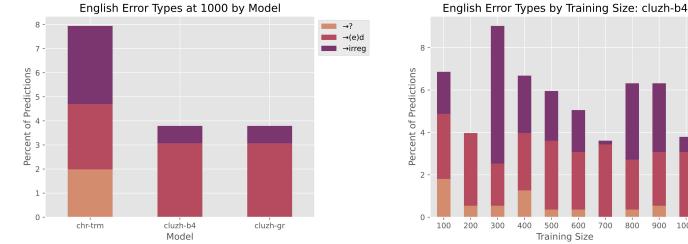
System	-ed	-ang	-ung	Other
(Gold)	2	2	3	1
CLUZH	4	1	3	0
HeiMorph	8	0	0	0
OSU	8	0	0	0

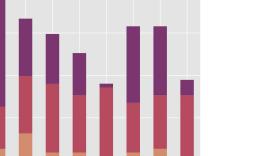
Over-regularization dominates, but CLUZH also over-irregularizes

Evaluating English Over-Regularization (CogSci'23)

What do systems do more broadly?

- Evaluated on manually annotated gold and prediction data
- All systems over-irregularize proportionately far more than child learners
- No system shows a *u*-shaped learning pattern





900 1000

700 800 →?

→(e)d

→irrea

Evaluating Productivity in German (SIGMORPHON'22)

Distribution of plural suffixes is similar in train and test

• Both overall and by-gender

Set	%-e	%-(e)n	%-er	%- Ø	%-s	#
Train	27.8%	38.5%	3.0%	26.7%	4.6%	600
Train F	2.8	96.2	0.0	0.5	0.5	212
Train M	45.4	7.3	1.5	41.2	4.5	262
Train N	33.3	4.0	11.1	40.5	11.1	126
Test	30.5%	36.7%	2.8%	24.8%	5.2%	600
Test F	3.5	95.0	0.0	0.0	1.5	201
Test M	48.9	9.2	0.3	35.9	5.6	284
Test N	32.2	2.6	13.9	40.9	10.4	115

Evaluating Productivity in German (SIGMORPHON'22)

Systems probability match

- Gold (G) Prediction (P) confusion matrices by model
- All systems probability match but slightly prefer -Ø
- ? indicates nonsense predictions

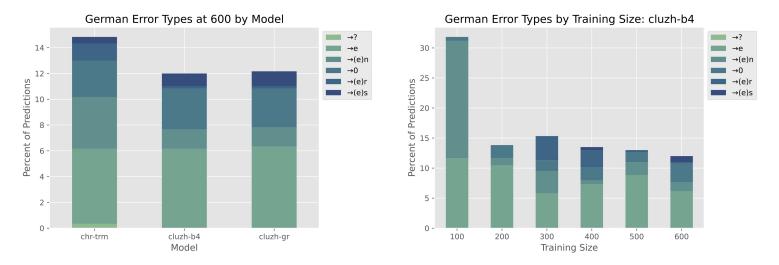
HeiMor	G -е	G -(e)n	G -er	G -Ø	G -s	Sum
Р -е	154	12	12	4	16	199
P -(e)n	14	194	0	0	4	212
P - <i>er</i>	4	0	4	1	4	13
P -Ø	9	10	0	142	1	162
P-s	1	1	1	0	3	6
Р?	1	2	0	2	3	8
Sum	183	220	17	149	31	600

CLUZH	G -е	G -(e)n	G -er	G -Ø	G -s	Sum
Р -е	168	16	13	0	18	215
P -(e)n	6	198	0	1	2	207
P -er	0	0	3	0	0	3
P -Ø	8	5	0	148	0	161
P -s	1	1	1	0	11	14
Ρ?	0	0	0	0	0	0
Sum	183	220	17	149	31	600

OSU	G -е	G -(e)n	G -er	G -Ø	G -s	Sum
Р -е	155	19	13	1	18	206
P -(e)n	7	184	0	0	2	193
P -er	2	0	3	1	0	6
P -Ø	11	10	1	142	1	165
P -s	2	1	0	1	8	12
Ρ?	6	6	0	4	2	18
Sum	183	220	17	149	31	600

Evaluating Productivity in German (CogSci'23)

- Half of errors were over-application of -e for all systems
- Some over-application of -*s* is present for all systems on the full training set
- Other than -e, error distribution is unstable over time for CLUZH-b4
- Early over-application of -e is encouraging



Evaluating Productivity in Arabic (SIGMORPHON'22)

Distribution of plural patterns differs in train and test

• Broken down by gender and rationality

Set	SFem	SMasc	Brokn	Sum
Train	424	140	140	998
Train F	222	0	85	307
Train M	202	140	349	691
Train H	24	129	84	237
Train NH	400	11	350	761
Test	257	62	281	600
Test F	156	0	73	229
Test M	101	62	208	371
Test H	15	50	43	108
Test NH	242	12	238	492

Evaluating Productivity in Arabic (SIGMORPHON'22)

Systems prefer Sound Feminines

- Gold (G) Prediction (P) confusion matrices by model
- Preference for sound feminine matches developmental findings
- ? indicates nonsense productions

HeiMor	G SF	G SM	G B	Sum
P SF	227	7	72	306
P SM	3	43	15	61
P B	18	5	177	200
Ρ?	9	7	17	33
Sum	257	62	281	600

CLUZH	G SF	G SM	G B	Sum
P SF	213	5	52	270
P SM	2	51	16	69
РВ	38	4	206	248
Ρ?	4	2	7	13
Sum	257	62	281	600

OSU	G SF	G SM	G B	Sum
P SF	218	8	49	275
P SM	5	50	15	70
РВ	29	2	202	233
Ρ?	5	2	15	22
Sum	257	62	281	600

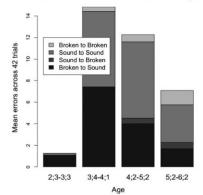
Evaluating Productivity in Arabic (SIGMORPHON'22)

Comparison with Developmental Literature

- Sound→Sound and Broken→Sound errors dominate developmentally
- But each system prefers
 Broken→Sound and Broken→Broken
- →Broken are over-irregularizations
 Consistent with other "single-route" systems that rely on analogy

Set	So→So	So→Br	Br→So	Br→Br
CLUZH	7	42	68	52
HeiMor	10	23	87	65
OSU	13	31	64	57

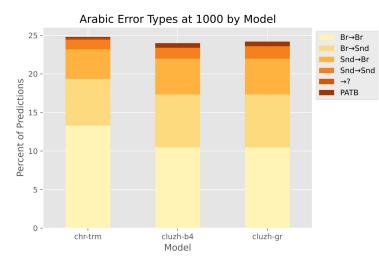
Pluralization Errors in Ravid & Farah (1999)

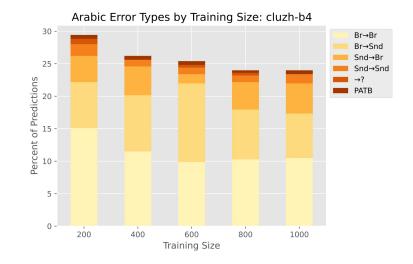


Evaluating Productivity in Arabic (CogSci'23)

Consistent with analysis from SIGMORPHON'22

- Sound >Sound and Broken >Sound errors dominate developmentally
- But each system prefers Broken→Sound and Broken→Broken
- No clear *u*-shaped learning





SIGMORPHON'22 and CogSci'23

Main Conclusions

- Performance on English > German > Arabic reflects pattern complexity
- Overall accuracy is pretty good! Especially considering the very low training sizes
- But error patterns are not human-like Heavily biased toward probability matching Far too much over-irregularization No u-shaped learning in English or Arabic

Such models are clearly not human-like → unlikely to be informative about language acquisition

- **1. Traditionally taken to be useful in downstream tasks**
- Maybe, but generalization to OOV feature sets is a weakness, particularly for the languages that inflection would be useful for
- 2. May provide insight into the behavior of NN architectures
- 3. May elucidate aspects of linguistic typology
- 4. May elucidate aspects of language acquisition

- **1. Traditionally taken to be useful in downstream tasks**
- Maybe, but generalization to OOV feature sets is a weakness, particularly for the languages that inflection would be useful for
- 2. May provide insight into the behavior of NN architectures
- Yes, but care needs to be taken to differentiate impact of data design decisions from the systems being investigated
- 3. May elucidate aspects of linguistic typology
- 4. May elucidate aspects of language acquisition

- **1. Traditionally taken to be useful in downstream tasks**
- Maybe, but generalization to OOV feature sets is a weakness, particularly for the languages that inflection would be useful for
- 2. May provide insight into the behavior of NN architectures
- Yes, but care needs to be taken to differentiate impact of data design decisions from the systems being investigated
- 3. May elucidate aspects of linguistic typology
- **Probably not.** We find that current leading systems are hardly impacted by typology
- 4. May elucidate aspects of language acquisition

- 1. Traditionally taken to be useful in downstream tasks
- Maybe, but generalization to OOV feature sets is a weakness, particularly for the languages that inflection would be useful for
- 2. May provide insight into the behavior of NN architectures
- Yes, but care needs to be taken to differentiate impact of data design decisions from the systems being investigated
- 3. May elucidate aspects of linguistic typology
- **Probably not.** We find that current leading systems are hardly impacted by typology
- 4. May elucidate aspects of language acquisition
- Probably not. We find that current leading systems do not behave like humans.
 → They are unlikely to be good models for acquisition.

Special Thanks to:

Jeff Heinz, Charles Yang, Contributors and participants in the SIGMORPHON 2022 shared tasks

