
Lemmas Matter, But Not Like That:
Predictors of Lemma-Based Generalization in Morphological Inflection

Sarah Payne and Jordan Kodner
Department of Linguistics & Institute for Advanced Computational Science

Stony Brook University, Stony Brook, NY, USA
{first.last}@stonybrook.edu

Abstract

Recent work has shown that overlap – whether
a given lemma or feature set is attested indepen-
dently in train – drives model performance on
morphological inflection tasks. The impact of
lemma overlap, however, is debated, with accu-
racy drops from 0% to 30% reported between
seen and unseen test lemmas. In this paper, we
introduce a novel splitting algorithm designed
to investigate predictors of accuracy on seen
and unseen lemmas. We find only an 11% aver-
age drop from seen to unseen test lemmas but
show that the number of lemmas in train has
a much stronger effect on accuracy on unseen
than seen lemmas. We also show that the previ-
ously reported 30% drop is inflated due to the
introduction of a near-30% drop in the number
of training lemmas from the original splits to
the novel splits. These results help us better
understand the factors affecting morphological
generalization by neural models.

1 Introduction

Morphological inflection – the task of producing
an inflected form given a lemma and a set of mor-
phosyntactic features – is a fundamental problem in
NLP, with both practical and scientific implications.
On the practical side, morphological inflection is
a crucial tool for pipelining, particularly for low-
resourced and highly-inflected languages for which
end-to-end systems remain impractical or infea-
sible (Bender, 2009; Oflazer and Saraçlar, 2018;
Wiemerslage et al., 2022; Arnett and Bergen, 2025;
Rapacz and Smywiński-Pohl, 2025, i.a.). On the
scientific side, morphological inflections are often
complex transformations at the word and sub-word
level (Chandlee, 2017). Investigating how neural
systems handle these transformations, and the cir-
cumstances under which they are able to generalize
them, provides a window into their linguistic gen-
eralization capabilities (Kodner et al., 2023b).

In recent years, the SIGMORPHON shared tasks
on morphological inflection have reported gener-

ANN

K
od

ne
re

ta
l.

SIGMORPHON
2022 train

SIGMORPHON
seen lemmas

SIGMORPHON
unseen lemmas

ANN
G

ol
dm

an
et

al
.

SIGMORPHON
2020 train

GOLDMAN
2022 train

SIGMORPHON
2020 test

GOLDMAN
2022 test

Figure 1: A schematization of the train and test methods
of Kodner et al. (2022) and Goldman et al. (2022).

ally high accuracy across many languages (Cot-
terell et al., 2016, 2017, 2018; McCarthy et al.,
2019; Vylomova et al., 2020; Pimentel et al., 2021;
Kodner et al., 2022; Goldman et al., 2023). Work
seeking to understand this success has investigated
predictors of model performance in terms of gener-
alization along different dimensions. Two aspects
of this are lemma overlap: whether the lemma
in a test (lemma, features, inflected form)
triple is also attested in train, and feature overlap,
whether the feature set in a test triple is also attested
in train. In both cases, entire triples do not reappear
between train and test, rather the test triple contains
a lemma or feature set seen in a distinct train triple.
The effect of overlap is measured by comparing
accuracy on test triples containing seen lemmas or
feature sets to those containing the unseen ones
(Goldman et al., 2022; Kodner et al., 2022); it thus
probes the ability of neural models to generalize to
novel lemmas or feature sets.

Previous work on lemma overlap has drawn
conflicting conclusions. Goldman et al. (2022)
compare model performance on the original SIG-
MORPHON 2020 splits – in which triples were par-
titioned uniformly at random – to their “lemma-
splits,” in which entire paradigms are partitioned
uniformly at random, and thus all lemmas occur
only in train or only in test. Goldman et al. report

a 30% average decrease in accuracy from the mod-
els trained and tested on the SIGMORPHON splits
to those trained and tested on their lemma-splits.
However, Kodner et al. (2022) and Kodner et al.
(2023b) find no performance drop on unseen lem-
mas. Their setup involves a single training split,
with a test set containing at most 50% triples with
attested features; this also results in a significant
portion of test triples with unseen lemmas. Kodner
et al. train a single model per language and find
no difference in accuracy between seen and unseen
lemmas in their test set. Both experimental designs
are conceptualized in Fig. 1. Crucially, while any
drop in test accuracy can be attributed directly to
differences in the test items in Kodner et al.’s setup,
they could be attributed either to differences in the
test items or the train sets in Goldman et al.’s.

In contrast to lemma overlap, previous work on
feature overlap has unequivocally shown that neu-
ral models struggle to generalize to unseen feature
sets: Kodner et al. (2022) found that all systems
perform better on test triples with attested feature
sets than those with unattested ones, with the gap
in accuracy ranging from 32% to as high as 79%.
These findings were replicated by Kodner et al.
(2023a), who performed a more in-depth analy-
sis on 6 languages. Kodner et al. (2023b) created
linguistically-informed language-specific probes,
and found that 2 of the 3 models which they tested
only succeeded on the simplest feature-based gen-
eralization, while the third failed on all probes.

In this paper, we aim to understand the causes
of the conflicting results on lemma overlap and fur-
ther investigate what factors impact models’ ability
to generalize to novel lemmas. Because of the
consistent findings regarding feature overlap, we
hold it constant; our goal is to understand lemma
and feature overlap separately so that future work
may investigate their interaction. In our first experi-
ment (§3), we introduce a novel splitting algorithm
which fixes a single train set and ensures that 50%
of test triples contain seen lemmas. We find an aver-
age accuracy drop of 11%, between those reported
by Kodner et al. and Goldman et al.. More impor-
tantly, we show that the number of training lemmas
has a much stronger effect on accuracy on unseen
than seen lemmas. In our second experiment (§4),
we replicate Goldman et al. to investigate causes of
our differing results, and show that the number of
lemmas in train is a stronger predictor of general-
ization to unseen lemmas than the number of triples.

Since Goldman et al.’s lemma-splitting held triple
count roughly constant but introduced a near-30%
drop in the number of lemmas from SIGMORPHON

to their lemma-based splits, they exaggerated the
true impact of lemma overlap. These results are a
step towards a more complete and interpretable pic-
ture of the dimensions across which neural models
succeed and fail at generalization.

2 Background: Defining Overlap

In morphological inflection tasks, models are
exposed to triples of (lemma, feature set,
inflected form) in train. During evaluation, they
are given a (lemma, feature set) pair as input
and expected to correctly predict the corresponding
inflected form. For example, given (walk, V;PAST),
a model should output walked. In iterations of the
SIGMORPHON shared task before 2022, triples are
partitioned uniformly at random into train or test.
While this entails that no triple occurring in train
will occur in test, as both Goldman et al. (2022)
and Kodner et al. (2022) note, it ignores the fact
that lemmas or feature sets that appear in train may
reappear during test separately. Consider a simple
example, adapted from Kodner et al. (2023b):

(1) Example train set:
t0: see seeing V;V.PTCP;PRS
t1: sit sat V;PST

(2) Example test set:
e0: see V;PST
e1: sit V;NFIN
e2: eat V;PST
e3: run V;PRS;3;SG

Though none of the triples in train (1) re-appear
in test (2), the lemmas and feature sets seen in train
do reappear individually. Consider e0, for which
both the lemma and feature set are attested sepa-
rately in train, and e3, for which neither are. One
might expect it to be easier for a model trained on
(1) to generate the correct result for e0 than for e3.
This is the insight behind studies of overlap: test
pairs with novel lemmas or novel feature sets re-
quire a system to generalize along different dimen-
sions, and evaluation measures that control specif-
ically for these overlaps can better probe models’
ability to perform these generalizations. Kodner
et al. (2023b) define four types of overlap:
both both the lemma and feature set are attested
separately in train (e0 in Example 2).
lemmaOnly only the lemma is attested in train,
and the feature set is novel (e1 in Example 2).
featsOnly only the feature set is attested in train,
and the lemma is novel (e2 in Example 2)

neither neither the lemma nor the feature set is
attested in train (e3 in Example 2)

We define lemmaSeen to be any evaluation triple
with a lemma attested in train (i.e., lemmaSeen
= lemmaOnly ∪ both) and lemmaNovel to be any
evaluation triple with a lemma unattested in train
(i.e., lemmaNovel = featsOnly ∪ neither).

3 Exp. 1: The Effect of Lemma Overlap

In this section, we test the impact of lemma over-
lap with a novel splitting algorithm that ensures
that 50% of test triples contain seen lemmas. Like
Kodner et al., our setup ensures a single training
set per language, but like Goldman et al., we focus
on lemma overlap rather than feature set overlap.

3.1 Splitting Algorithm

Our algorithm takes in a set of TRIPLES and a set
of the unique LEMMAS contained in these triples.
It begins by randomly selecting half1 of the lemmas
as our OVERLAPLEMMAS. It then iteratively adds
more lemmas to OVERLAPLEMMAS until OVER-
LAPTRIPLES, the number of triples containing a
lemma in OVERLAPLEMMAS, is at least equal to
the sum of the train size, fine tune 2 size, and half
of the test size. Once OVERLAPTRIPLES is suffi-
ciently large, we sample TRAIN and FINETUNE

from it, as well as half of our test set; the remain-
ing half is sampled from TRIPLES \ OVERLAP-
TRIPLES. This results in a single train set and a
test set where exactly half of test triples contain a
lemma seen in train. This algorithm is visualized in
Figure 2, and pseudocode is provided in Appendix
A.3

3.2 Languages

Following Goldman et al., we use the data from
the SIGMORPHON 2020 shared task (Vylomova
et al., 2020), which contains more languages than
SIGMORPHON 2022. We select a 7,000 /1,000 /
2,000 train/fine-tune/test split to follow both the
70% / 10% / 20% splitting of Goldman et al. and
the 7,000 training size used by Kodner et al.. To
satisfy our split sizes, we retain only languages
with at least 10,000 raw triples. This leaves us with

1We also tried sampling starting from 1 lemma until the
requisite number was met, and results were similar.

2Often called “validation.” We call this set “fine tune” to
clearly distinguish its purpose, avoiding a commom confusion,
cf. (van der Goot, 2021).

3Our code splits, and neural model outputs can be found
at: https://github.com/paynesa/lemmas-matter

ANN
SIGMORPHON

2020 train

SIGMORPHON
seen lemmas

SIGMORPHON
unseen lemmas

Figure 2: A schematization of our setup for Exp. 1

36 languages across 7 families; these are listed in
Appendix A. We create 5 random (downsampled)
train-test splits since the performance of ANNs on
morphological tasks is known to vary across splits
(Liu and Prud’hommeaux, 2022; Kodner et al.,
2023b). Across all splits, feature overlap is near-
ceiling, with an average of 99.5% of test triples
containing attested features (σ = 1.17%). Though
we report the following analyses on all test triples,
they do not differ significantly if done only with
those test triples containing attested feature sets.

3.3 Neural Models

We select three neural models for our evaluation,
spanning a diverse range of architectures:

CHR-TRM (Wu et al., 2021) is a character-level
transformer used as a baseline in SIGMORPHON

2021 and 2022, and the only model used by both
Goldman et al. and Kodner et al.. We use the hyper-
parameters suggested by the original authors for
small training conditions.4

CLUZH (Wehrli et al., 2022) is a character-level
transducer used by Kodner et al., who consider two
variants with consistent hyper-parameters across
languages. We use the beam decoding variant,
which consistently performs better in their experi-
ments, with a beam size of 4 and the large training
hyperparameters.5

DeepSpin (Peters and Martins, 2020) is a mul-
tilingual RNN used by Goldman et al.. It is com-
posed of 2 biLSTM encoders with bi-linear gated
attention using sparsemax (Martins and Astudillo,
2016) and one unidirectional LSTM decoder.6

We exclude CULING (Liu and Hulden, 2020)
due to its similarity to CHR-TRM and Goldman
et al.’s base LSTM since they do not fully report
results on this model.

3.4 Results

For each architecture, language, and seed, we cal-
culate SEEN and NOVEL accuracy on lemmaSeen

4https://github.com/shijie-wu/neural-transducer
5https://github.com/slvnwhrl/il-reimplementation
6https://github.com/deep-spin/sigmorphon-seq2seq

https://github.com/paynesa/lemmas-matter
https://github.com/shijie-wu/neural-transducer
https://github.com/slvnwhrl/il-reimplementation
https://github.com/deep-spin/sigmorphon-seq2seq

CHR−TRM CLUZH DeepSpin

5 6 7 8 5 6 7 8 5 6 7 8

0.00

0.25

0.50

0.75

1.00

Number of Lemmas in Train, Log Scale

A
cc

ur
ac

y

Lemmas

Novel

Seen

Seed

1

2

3

4

5

Accuracy on Seen and Novel Lemmas

Figure 3: The ACCURACY ∼ LEMMAS beta regression models for SEEN and NOVEL accuracy.

Model SEEN NOVEL DROP Reported
CHR-TRM 92.594 75.786 -16.808 -37.00

CLUZH 92.138 83.221 -8.917 —
DEEPSPIN 91.946 83.828 -8.118 -14.00
Macro-Avg 92.226 80.945 -11.281 -30.00

Table 1: Accuracy on seen and unseen lemmas by neural
architecture, averaged across seeds & languages.

and lemmaNovel test triples respectively; DROP is
the difference between the two. The averages of
these values by architecture are given in Table 1,
as well as those reported by Goldman et al. (2022).
Notably, our macro-averaged accuracy drop is just
a third of that reported by Goldman et al.; this dif-
ference is most notable for CHR-TRM. Full results
by language and architecture are in Appendix A.

Though we fix training size, the number of
unique lemmas in the training data varies across
languages. To investigate the effect of training lem-
mas on SEEN and NOVEL accuracy, we fit two beta
regression models, implemented via the mcgv pack-
age in R with family = betar and the default
logit linking function. We choose beta regression
because our response variables are in the interval
(0, 1) and follow a beta distribution (Appendix A),
and we log-scale LEMMAS, our predictor, to ob-
tain a better model fit. The fitted ACCURACY ∼
LEMMAS models are given in Fig. 3. We note that
NOVEL accuracy falls off much more steeply as the
number of training lemmas decreases than SEEN

accuracy; this is most striking for CHR-TRM.
Interestingly, the SEEN β coefficients are all

significantly negative (−0.120∗ for CHR-TRM,
−0.130∗ for CLUZH and −0.098∗ for DEEPSPIN),
suggesting that performance on seen lemmas actu-
ally decreases as the number of training lemmas
increases. This may be a function of feature over-
lap: since training size is fixed, languages with
more training lemmas will have smaller paradigms
available in train, which may lead to a greater pro-

portion of test triples containing novel features.
Indeed, there is a significant negative relationship
between the number of training lemmas and the
proportion of test triples with attested features in
our data (Pearson’s r = −0.407∗, Spearman’s
ρ = −0.423∗, Kendall’s τB = −0.332∗). Since
feature overlap is known to play a key role in model
performance (Kodner et al., 2022), this may explain
the relationship we observe for SEEN accuracy. Fur-
ther, the number of times a model is exposed to a
single lemma in train regardless of feature overlap
may affect its ability to generalize that lemma to
other parts of its paradigm. Both of these points are
closely tied to the notion of paradigm saturation,
or the proportion of its paradigm that a lemma is
attested in during train (Chan, 2008; Lignos and
Yang, 2016). Future work should further inves-
tigate the interplay between paradigm saturation,
lemma overlap, and feature overlap in predicting
models’ generalization abilities.

In contrast, NOVEL accuracy significantly in-
creases as a function of the number of training
lemmas (β = 0.558∗ for CHR-TRM, 0.148∗ for
CLUZH, 0.190∗ for DEEPSPIN). The combina-
tion of the negative coefficients for SEEN accu-
racy and the positive ones for NOVEL accuracy
further mean that there is a significant relation-
ship between DROP and LEMMAS for all architec-
tures (β = −0.524∗ for CHR-TRM, −0.174∗ for
CLUZH, and −0.194∗ for DEEPSPIN). Despite this
significant relationship however, the overall effect
of lemma overlap is still far less than that reported
by Goldman et al. at only 11% on average.

4 Exp. 2: Explaining the Discrepancy

The difference between our results and those of
Goldman et al. (2022) are partly explainable by the
relationship between training lemmas and accuracy
drop outlined above. Since we fix our train size, we
exclude from our analysis languages with minis-

0.00

0.25

0.50

0.75

1.00

−40 −30 −20 −10 0
Percent Difference from SIGMORPHON 2020 to Goldman et al.

D
en

si
ty Difference

Lemmas

Triples

Difference in Training Triples & Lemmas

Figure 4: The distribution of percent differences in triple
and lemma counts between the SIGMORPHON 2020 to
the Goldman et al. training data.

cule numbers of training lemmas; Goldman et al.
include these languages in their analysis. Indeed,
the median number of training lemmas in our data
is 1,015 vs. just 141 for Goldman et al., despite
comparable means (1,625 and 2,038, respectively).

However, since Goldman et al. train two sep-
arate models for each language (Fig. 1), the re-
sulting differences in performance could also be
attributable to differences in the training data it-
self. Even if Goldman et al. had used an identical
splitting algorithm across the two train-test splits,
the performance of morphological ANNs varies
across random seeds (Liu and Prud’hommeaux,
2022, i.a.) and initializations (e.g. Corkery et al.,
2019). Moreover, since their train sets were de-
rived from separate splitting algorithms, they show
substantial distributional differences which may be
relevant to performance. Firstly, though Goldman
et al. retain the train-test ratios from SIGMOR-
PHON 2020, the number of triples in their train
splits do not match exactly since they split on en-
tire paradigms. They report an average decrease
in training triples of 3.5%, but there is a great deal
of variation (σ = 6.341%), with one language (Lu-
dic) experiencing a 47.3% decrease. What’s more,
Goldman et al.’s lemma-splitting strategy results
in a 28.846% (σ = 5.221%) average drop in the
number of training lemmas between the SIGMOR-
PHON 2020 splits and their splits, which they do
not report. The cause of this drop is intuitive: if we
assume that nearly all available lemmas will appear
at least once in the SIGMORPHON training data,
then since Goldman et al. sample 70% for train,
we expect about a 30% decrease in the number of
training lemmas. Fig. 4 shows the distributions of
train triple and lemma count decreases.

Implicit in the conclusions drawn by Goldman
et al. (2022) is the assumption that the decrease
in the number of training lemmas does not mean-

SIGMORPHON CHR-TRM CLUZH DEEPSPIN

TRIPLES
β 0.283∗ 0.360∗ 0.226∗

AIC -17170.90 -15843.95 -17413.73
BIC -17167.85 -15840.90 -17410.68

LEMMAS
β 0.156 0.270∗ 0.129

AIC -17056.13 -15712.94 -17356.09
BIC -17053.08 -15709.89 -17353.04

GOLDMAN CHR-TRM CLUZH DEEPSPIN

TRIPLES
β 0.643∗ 0.396∗ 0.286∗

AIC -3694.535 -10671.66 -12273.43
BIC -3691.483 -10668.61 -12270.37

LEMMAS
β 0.811∗ 0.370∗ 0.192

AIC -3798.311 -10473.82 -12163.35
BIC -3795.258 -10470.76 -12160.30

Table 2: β coefficients (asterisks indicate p < 0.05) and
AIC & BIC values (the better predictor is bolded) for
the accuracy beta regression models.

ingfully influence their comparison, and thus that
the number of training lemmas is not a predictor
of model performance or performance drop. The
evidence presented in §3 already suggests that this
is not the case, but to further investigate this point,
we replicate a subset of Goldman et al.’s results
and investigate predictors of raw accuracy and ac-
curacy drop. We show that the number of training
lemmas, both measured directly and in terms of the
decrease between the two training sets, has a sig-
nificant effect on accuracy and is the best predictor
of accuracy drop across architectures. We further
show that Goldman et al.’s reported accuracy drops
are substantially higher than they would have been
had they held lemma counts constant.

4.1 Setup

We focus our replication on three language fami-
lies: Niger-Congo, Uralic, and Romance. These
were chosen for the range of SIGMORPHON data
sizes: Niger-Congo data are typically quite small,
while Uralic are large, and Romance contains a mix.
Languages are listed in Appendix B. We retain the
neural architectures from §3.3.

4.2 Accuracy and Accuracy Drop

To differentiate our results on the Goldman et al.
splits from the results reported by Goldman et al.,
we denote our results as GOLDMAN. We calcu-
late GOLDMAN accuracy and SIGMORPHON accu-
racy for each language and neural architecture, as
well as the DROP in accuracy between these two.
Since Goldman et al. did not fix train size in their
study, we consider both TRIPLES, the number of
unique training triples, and LEMMAS, the number
of unique training lemmas, as possible predictors
for raw accuracy. For DROP, we consider each of
these predictors as measured on the GOLDMAN

CHR−TRM CLUZH DeepSpin

6 8 10 6 8 10 6 8 10
0.00

0.25

0.50

0.75

1.00

Training Triples, Log Scale

A
cc

ur
ac

y

Family

Niger Congo
Romance
Uralic

Dataset

GOLDMAN
SIGMORPHON

Training Triples vs. Accuracy

CHR−TRM CLUZH DeepSpin

2.5 5.0 7.5 10.0 2.5 5.0 7.5 10.0 2.5 5.0 7.5 10.0

0.00

0.25

0.50

0.75

1.00

Training Lemmas, Log Scale

A
cc

ur
ac

y

Family

Niger Congo
Romance
Uralic

Dataset

GOLDMAN
SIGMORPHON

Training Lemmas vs. Accuracy

Figure 5: The fitted ACCURACY ∼ TRIPLES and ACCURACY ∼ LEMMAS beta regression models.

data, as well as LEMMA DROP, the unscaled differ-
ence in the number of lemmas from the SIGMOR-
PHON to the GOLDMAN training data.7 Following
§3, for each data set and neural architecture, we fit
a beta regression for each predictor, all log-scaled.

The fitted models for raw accuracy are in Fig.
5. Similarly to §3, we note that both TRIPLES and
LEMMAS have a much stronger effect on GOLD-
MAN accuracy than SIGMORPHON. This is mir-
rored by the β coefficients, which are given in Ta-
ble 2, along with AIC and BIC, two measures of
the goodness of model fit that balance model per-
formance, in terms of log likelihood, with model
complexity. For both measures, lower values indi-
cate a better model. Since we used a logit linking
function in our beta regression model, our β co-
efficients are log-odds interpretable: a one-unit
increase in the predictor increases the log-odds of
the predicted mean proportion by β. As such, larger
values of β correspond to stronger (or steeper, in
terms of slope) influences on accuracy. In line
with Fig. 5, β coefficients are consistently larger
for GOLDMAN than SIGMORPHON accuracy. For
CHR-TRM on GOLDMAN, LEMMAS is the better
predictor of accuracy, as evidenced by the signifi-
cant β coefficients and lower AIC and BIC values.
In all other cases, TRIPLES is the better predictor.

7One could also consider scaling LEMMA DIFFERENCE as
a proportion decrease. However, because these scaled values
are so closely clustered around the mean, there is little relation
between them and DROP.

Model S ACC G ACC DROP Reported
CHR-TRM 93.451 61.067 -32.383 -37.00
DEEPSPIN 94.036 86.377 -7.660 -14.00

CLUZH 91.222 81.790 -9.432 —
Macro-Avg 92.903 76.411 -16.492 -30.00

Family S ACC G ACC DROP Reported
Niger-Congo 97.470 76.162 -21.308 -39.00

Romance 97.999 85.478 -12.521 -28.00
Uralic 87.502 72.035 -15.467 -23.00

Macro-Avg 94.323 77.891 -16.432 -30.00

Table 3: SIGMORPHON (S ACC) and GOLDMAN (G
ACC) accuracy and DROP by architecture and language
family compared to Goldman et al. reported drops.

For each dataset and neural architecture, we fit
an additional beta regression model using both
TRIPLES and LEMMAS as predictors. Since our
two predictors are highly co-linear (r = 0.904, ρ =
0.891, τb = 0.717 for SIGMORPHON; r = 0.892,
ρ = 0.891, τb = 0.722 for GOLDMAN), we use
the better predictor as the reference category, so
the effect of the second predictor is only measured
as that beyond the effect of the first. An ANOVA
test determines that the second predictor does not
have a significant effect beyond the first for any
architecture on the GOLDMAN data. For SIGMOR-
PHON, LEMMAS has a significant effect beyond
that of TRIPLES for CHR-TRM and DEEPSPIN.
Full model details and outputs are in Appendix B.

We now turn from raw accuracy to accuracy
DROP, which Goldman et al. reported in their
original study. Table 3 lists our observed accu-

TRIPLES LEMMAS LEMMA DROP
Model Coeff. AIC BIC Coeff. AIC BIC Coeff. AIC BIC

CHR-TRM 0.554∗ 1550.002 1553.055 0.904∗ 1016.286 1019.338 0.816∗ 1193.401 1196.454
CLUZH 0.239∗ 5855.958 5859.011 0.287∗ 5823.695 5826.747 0.300∗ 5831.558 5834.611

DEEPSPIN 0.238∗ 7018.613 7021.666 0.210∗ 7027.519 7030.572 0.253∗ 6992.300 6995.352

Table 4: β coefficients (asterisks indicate p < 0.05) and AIC and BIC values (the better predictor is bolded) for the
three predictors of DROP.

Model CONSTANT DECREASE Diff
CHR-TRM 25.689 30.585 4.896
DEEPSPIN 6.681 7.521 0.840

CLUZH 7.010 8.855 1.845
Macro-Avg 13.127 15.654 2.527

Table 5: Predicted CONSTANT/DECREASE acc. drops

racy drops by neural architecture and by language
family, compared to those reported by Goldman
et al.. We observe an average decrease of 45%
from the values reported by Goldman et al. to our
setup. This discrepancy is explainable in two ways.
First, CLUZH outperformed Goldman et al.’s base
LSTM, which brought down average performance
on unseen lemmas. Second, the families we omit-
ted from our replication contain many languages
with extremely small training sets, for which we
expect there to be larger drops given Fig. 5.

We also perform a beta regression with each pre-
dictor for DROP, and find that the best predictor
for all three architectures depends on lemmas: ei-
ther LEMMAS or LEMMA DROP (Table 4). Given
the collinearity between these predictors, how-
ever (LEMMAS and LEMMA DROP: r = 0.986,
ρ = 0.978, τb = 0.945), we wish to test whether
the addition of either of the other predictors signifi-
cantly increases in the predictive power of the beta
regression model. As for ACCURACY, we train a
third beta regression model for each architecture
with all three predictors, again using the best pre-
dictor as the reference category, with the other two
added in order of increasing AIC. For all three ar-
chitectures, an ANOVA test indicates that addition
of neither the second nor third predictor led to a
significant increase in model performance.

In sum, though TRIPLES is often an important
predictor of raw accuracy, LEMMAS or LEMMA

DROP are the key predictors of DROP, which was
the original focus of Goldman et al. (2022). As
such, the drop in training lemmas from the SIG-
MORPHON to GOLDMAN data can be expected to
significantly affect the drop in accuracy between
these datasets, a confound which favors the in-
creased accuracy drop reported by Goldman et al..

4.3 Quantifying the Confound

Our results thus far demonstrate that the number of
training lemmas plays a crucial role in predicting
the drop in accuracy between SIGMORPHON and
GOLDMAN: train sets with fewer lemmas exhibit a
larger drop. As we saw above, however, the GOLD-
MAN setup creates train sets with fewer lemmas
than their SIGMORPHON counterparts even when
their size in triples is held constant. Consider, for
example, a language with 1000 training lemmas
in SIGMORPHON. Because accuracy will fall off
for the GOLDMAN data as the number of training
lemmas decreases, the drop in accuracy between
the 1000-lemma SIGMORPHON sample and a 1000-
lemma GOLDMAN sample will be significantly less
than that between a 1000-lemma SIGMORPHON

sample and the 700-lemma GOLDMAN sample pre-
dicted by the near-30% decrease in the number of
training lemmas.

We can further formalize this intuition using the
beta regression models from §4.2. For values of
LEMMAS from 10 to 25,000, we calculate two
types of accuracy drops. DECREASE represents
Goldman et al.’s actual approach in which train
sets averaged nearly 30% fewer lemmas than their
SIGMORPHON 2020 counterparts. It is calculated
by subtracting the predicted GOLDMAN accuracy
on 0.7L lemmas from the predicted SIGMORPHON

accuracy on L lemmas. CONSTANT drop is meant
to model the results had train lemmas been held
constant, and is calculated by subtracting the pre-
dicted GOLDMAN accuracy on L lemmas from the
predicted SIGMORPHON accuracy on L lemmas.

Fig. 6 shows the differences between the CON-
STANT and DECREASE predicted drops for each of
the neural architectures as a function of the number
of training LEMMAS plotted on top of the actual
distribution of training lemmas in the GOLDMAN

and SIGMORPHON data. Notably, the distribution
of train sizes peaks at the point where Goldman
et al.’s DECREASE lemma-splitting approach over-
predicts accuracy drop by the greatest degree. As
such, the original study’s confounds mutually rein-
forced one another to increase accuracy drops.

0.00000

0.00025

0.00050

0.00075

0.0

2.5

5.0

7.5

0 5000 10000 15000 20000 25000
Number of Lemmas in Train

D
en

si
ty

D
ifference in P

redicted D
rop

Model

CHRTRM

CLUZH

DeepSpin

Data

GOLDMAN

SIGMORPHON

Training Lemma Distribution & Difference in Predicted Drop

Figure 6: The difference between the CONSTANT and DECREASE predicted drop as a function of the number of
training lemmas, plus the distribution of training lemmas in the SIGMORPHON and GOLDMAN data.

Table 5 gives the average predicted CONSTANT

and DECREASE accuracy drops for each architec-
ture for the actual values of training lemmas in the
SIGMORPHON and GOLDMAN data. The average
difference in drop is 2.5%, with the maximum (for
CHR-TRM) estimated at 4.9%. This means that if
Goldman et al. (2022) had held the number of train-
ing lemmas constant between their overlapping and
non-overlapping splits, they would have found an
effect of lemma overlap several percentage points
smaller than the one they reported.

5 Discussion

The findings presented here suggest a more nu-
anced view of the role of lemma overlap than pro-
posed by either Goldman et al. (2022) or Kodner
et al. (2022). With our novel splitting algorithm
(§3), we find that all neural architectures achieve
substantially higher accuracy on seen than unseen
lemmas, unlike Kodner et al., but the difference is
much lower (11%), about a third of that reported by
Goldman et al. reported (30%). More importantly,
however, we show that the number of lemmas in
train has a much stronger effect on accuracy on test
triples containing unseen lemmas than seen ones.

While there are several incidental differences
between our study and the two prior studies, we es-
tablished one principled difference which resulted
in the especially large performance drop which
Goldman et al. reported: the number of lemmas in
the training set (absolute or relative to the original
set) is the most important predictor for accuracy
drop, with larger accuracy drops occurring for lan-
guages with fewer train lemmas. Goldman et al.
tested the effect of lemma overlap with two distinct
training sets, one which allowed for lemma over-
lap, and one that both banned overlap and was on

average 30% smaller in terms of lemma count; this
was a confound which inflated accuracy drop. As
we found in §4.3, Goldman et al.’s data was also
highly skewed towards small training sizes where
the impact of this confound was at its greatest.

Our own study of lemma overlap was set up
similarly to Kodner et al. (2022) and Kodner et al.
(2023b) in that we trained models on a single train-
ing set and tested them on distinct test sets (Fig. 2).
This eliminates the potential for confounds such
as the training lemma count. Unlike Kodner et al.,
who found no effect of lemma overlap, however,
we found a substantial drop. One possible reason
for this discrepancy is the role of feature attesta-
tion: in our study, we ensured a 50% seen/unseen
lemma split in test. Doing so on at least 10,000
triple data sets caused feature set overlap to rise to
99.5%, thus controlling for this additional factor;
indeed, our analysis does not significantly change
when conducted only over test triples containing
seen feature sets. Kodner et al., on the other hand,
fixed feature set overlap to a maximum of 50% and
did not control for lemma overlap explicitly.

It is possible that this discrepancy emerges as
an artifact of the feature-based splitting algorithm
or of the interaction between lemma and feature
overlap. If, for example, lemma overlap has a small
but significant effect for triples with seen features
(what our results show) but does not play a role in
triples with unseen features, this could help to ex-
plain the results of Kodner et al.. Now that we have
established a better understanding of the effect of
lemma overlap on triples with seen feature sets, fu-
ture work should further investigate the interaction
between lemma overlap and feature overlap. As
discussed in §3, future work should also investigate
the effect of the number of times a given lemma

or feature set has been seen in train rather than
making a binary attested-unattested distinction.

The findings presented here have implications
for our understanding of subword-level generaliza-
tion in different classes of neural network and are
thus an important contribution interpretability for
these models. Intuitively, generalizing morphologi-
cal inflections to unseen lemmas is a more challeng-
ing task than generalization to seen lemmas, since it
requires generalization from the lemma and feature
sets only. Without additional evidence from other
inflected forms of the lemma, we cannot know, for
example, if it follows a regular or irregular pattern.

While all models performed similarly to each
other on languages with the largest numbers of
training lemmas (Fig. 3), they diverged in their
ability to generalize on languages with the smallest
numbers of training lemmas. CHR-TRM, a charac-
ter transformer trained on a single language, strug-
gled the most to generalize to unseen lemmas on the
smallest training sets, conforming with our expec-
tations about the data hungry nature of transform-
ers. On the other hand, DEEPSPIN, a multilingual
model with a much simpler BiLSTM architecture,
much more readily generalized to unseen lemmas
even at the smallest training sizes and was nearly
immune to performance drop.

6 Conclusion

In this paper, we have demonstrated that the num-
ber of lemmas in the training data significantly
affects the performance of neural models on un-
seen lemmas, but not on seen lemmas. This result
entails that neural models struggle to generalize to
novel lemmas when trained on small data, an im-
portant step to understanding how different classes
of model generalize at a subword level. Beyond
just understanding how models generalize or fail
to, inflection still remains an important element in
NLP for morphologically rich low-resource and en-
dangered languages, as evidenced by contributions
to recent workshops on NLP for under-resourced,
endangered, and indigenous language families.8

In addition to the main results concerning gen-
eralization to seen and unseen lemmas, this paper
provides a methodological contribution. We find
that careful experimental design lets us not only
reassess top line numbers claimed in prior work
(namely, Goldman et al. 2022), but also provides
an explanation for the causes of previous discrep-

8e.g., ComputEL, AmericasNLP, RAIL, ArabicNLP

ancies and allows us to identify confounds. We
evaluated the role of lemma overlap while control-
ling for a number of potential confounds by holding
the training set constant. We augmented the report-
ing of top-level accuracy numbers with statistical
analysis modeling the role of confounding factors
on performance. It is likely that these approaches
will prove useful in future work assessing patterns
in morphological generalization. In particular, now
that a separate understanding of the roles of feature
overlap and lemma overlap has been established,
future work is well-positioned to investigate their
interaction. While overlap has been quantified in
terms of binary attestation in train, future work may
also consider the number of times a given lemma or
feature set is attested in order to gain a more com-
plete picture of factors affecting generalization.

Acknowledgements

We are grateful to Sandy Abu El Adas, Mark
Aronoff, Smeet Chheda, Jeff Heinz, Scott Nelson,
Owen Rambow, and the anonymous reviewers for
their feedback on this work. SP gratefully acknowl-
edges support from the Institute for Advanced Com-
putational Science Graduate Research Fellowship
and the National Science Foundation Graduate Re-
search Fellowship Program under NSF Grant No.
2234683. Experiments were performed on the Sea-
Wulf HPC cluster maintained by RCC and IACS at
Stony Brook University and made possible by NSF
grant No. 1531492.

Limitations

We discuss two key limitations. Firstly, any ex-
periment of this nature must generalize from the
specific neural architectures and languages tested
to draw more general claims. In §4, we discussed
the effects our inclusion of CLUZH and omission
of Goldman et al.’s base LSTM, but future work
should investigate more neural architectures, as
well as more language samples as they become
available in future SIGMORPHON shared tasks. Sec-
ondly, while we have conducted an extensive com-
parison between our results and those of Goldman
et al., we have yet to conduct a similar comparison
with Kodner et al. since the latter paper also deals
with feature overlap. Now that we have a better un-
derstanding of the factors affecting lemma overlap,
however, we are better positioned to investigate its
interaction with feature overlap, which we plan to
do in future work.

https://aclanthology.org/venues/computel/
https://aclanthology.org/venues/americasnlp/
https://aclanthology.org/volumes/2024.rail-1/
https://aclanthology.org/venues/arabicnlp/

References
Catherine Arnett and Benjamin Bergen. 2025. Why do

language models perform worse for morphologically
complex languages? In Proceedings of the 31st Inter-
national Conference on Computational Linguistics,
pages 6607–6623, Abu Dhabi, UAE. Association for
Computational Linguistics.

Emily M. Bender. 2009. Linguistically naïve != lan-
guage independent: Why NLP needs linguistic typol-
ogy. In Proceedings of the EACL 2009 Workshop
on the Interaction between Linguistics and Compu-
tational Linguistics: Virtuous, Vicious or Vacuous?,
pages 26–32, Athens, Greece. Association for Com-
putational Linguistics.

Erwin Chan. 2008. Structures and distributions in
morphological learning. Ph.D. thesis, University
of Pennsylvania, Philadelphia, PA.

Jane Chandlee. 2017. Computational locality in mor-
phological maps. Morphology, 27(4):599–641.

Maria Corkery, Yevgen Matusevych, and Sharon Gold-
water. 2019. Are we there yet? encoder-decoder
neural networks as cognitive models of English past
tense inflection. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 3868–3877, Florence, Italy. Associa-
tion for Computational Linguistics.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
Géraldine Walther, Ekaterina Vylomova, Arya D. Mc-
Carthy, Katharina Kann, Sabrina J. Mielke, Garrett
Nicolai, Miikka Silfverberg, David Yarowsky, Ja-
son Eisner, and Mans Hulden. 2018. The CoNLL–
SIGMORPHON 2018 shared task: Universal mor-
phological reinflection. In Proceedings of the
CoNLL–SIGMORPHON 2018 Shared Task: Univer-
sal Morphological Reinflection, pages 1–27, Brussels.
Association for Computational Linguistics.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
Géraldine Walther, Ekaterina Vylomova, Patrick Xia,
Manaal Faruqui, Sandra Kübler, David Yarowsky,
Jason Eisner, and Mans Hulden. 2017. CoNLL-
SIGMORPHON 2017 shared task: Universal mor-
phological reinflection in 52 languages. In Proceed-
ings of the CoNLL SIGMORPHON 2017 Shared Task:
Universal Morphological Reinflection, pages 1–30,
Vancouver. Association for Computational Linguis-
tics.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
David Yarowsky, Jason Eisner, and Mans Hulden.
2016. The SIGMORPHON 2016 shared Task—
Morphological reinflection. In Proceedings of the
14th SIGMORPHON Workshop on Computational
Research in Phonetics, Phonology, and Morphology,
pages 10–22, Berlin, Germany. Association for Com-
putational Linguistics.

Omer Goldman, Khuyagbaatar Batsuren, Salam Khal-
ifa, Aryaman Arora, Garrett Nicolai, Reut Tsarfaty,

and Ekaterina Vylomova. 2023. SIGMORPHON–
UniMorph 2023 shared task 0: Typologically di-
verse morphological inflection. In Proceedings of the
20th SIGMORPHON workshop on Computational
Research in Phonetics, Phonology, and Morphology,
pages 117–125, Toronto, Canada. Association for
Computational Linguistics.

Omer Goldman, David Guriel, and Reut Tsarfaty. 2022.
(un)solving morphological inflection: Lemma over-
lap artificially inflates models’ performance. In Pro-
ceedings of the 60th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 864–870, Dublin, Ireland. Association
for Computational Linguistics.

Jordan Kodner, Salam Khalifa, Khuyagbaatar Bat-
suren, Hossep Dolatian, Ryan Cotterell, Faruk Akkus,
Antonios Anastasopoulos, Taras Andrushko, Arya-
man Arora, Nona Atanalov, Gábor Bella, Elena
Budianskaya, Yustinus Ghanggo Ate, Omer Gold-
man, David Guriel, Simon Guriel, Silvia Guriel-
Agiashvili, Witold Kieraś, Andrew Krizhanovsky,
Natalia Krizhanovsky, Igor Marchenko, Magdalena
Markowska, Polina Mashkovtseva, Maria Nepomni-
ashchaya, Daria Rodionova, Karina Scheifer, Alexan-
dra Sorova, Anastasia Yemelina, Jeremiah Young,
and Ekaterina Vylomova. 2022. SIGMORPHON–
UniMorph 2022 shared task 0: Generalization and
typologically diverse morphological inflection. In
Proceedings of the 19th SIGMORPHON Workshop
on Computational Research in Phonetics, Phonology,
and Morphology, pages 176–203, Seattle, Washing-
ton. Association for Computational Linguistics.

Jordan Kodner, Salam Khalifa, and Sarah Ruth Brog-
den Payne. 2023a. Exploring linguistic probes for
morphological generalization. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 8933–8941, Singapore.
Association for Computational Linguistics.

Jordan Kodner, Sarah Payne, Salam Khalifa, and Zoey
Liu. 2023b. Morphological inflection: A reality
check. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 6082–6101, Toronto,
Canada. Association for Computational Linguistics.

Constantine Lignos and Charles Yang. 2016. Morphol-
ogy and language acquisition. The Cambridge hand-
book of morphology, 743764.

Ling Liu and Mans Hulden. 2020. Leveraging princi-
pal parts for morphological inflection. In Proceed-
ings of the 17th SIGMORPHON Workshop on Com-
putational Research in Phonetics, Phonology, and
Morphology, pages 153–161, Online. Association for
Computational Linguistics.

Zoey Liu and Emily Prud’hommeaux. 2022. Data-
driven model generalizability in crosslinguistic low-
resource morphological segmentation. Transactions
of the Association for Computational Linguistics,
10:393–413.

https://aclanthology.org/2025.coling-main.441/
https://aclanthology.org/2025.coling-main.441/
https://aclanthology.org/2025.coling-main.441/
https://aclanthology.org/W09-0106
https://aclanthology.org/W09-0106
https://aclanthology.org/W09-0106
https://doi.org/10.18653/v1/P19-1376
https://doi.org/10.18653/v1/P19-1376
https://doi.org/10.18653/v1/P19-1376
https://doi.org/10.18653/v1/K18-3001
https://doi.org/10.18653/v1/K18-3001
https://doi.org/10.18653/v1/K18-3001
https://doi.org/10.18653/v1/K17-2001
https://doi.org/10.18653/v1/K17-2001
https://doi.org/10.18653/v1/K17-2001
https://doi.org/10.18653/v1/W16-2002
https://doi.org/10.18653/v1/W16-2002
https://doi.org/10.18653/v1/2023.sigmorphon-1.13
https://doi.org/10.18653/v1/2023.sigmorphon-1.13
https://doi.org/10.18653/v1/2023.sigmorphon-1.13
https://doi.org/10.18653/v1/2022.acl-short.96
https://doi.org/10.18653/v1/2022.acl-short.96
https://doi.org/10.18653/v1/2022.sigmorphon-1.19
https://doi.org/10.18653/v1/2022.sigmorphon-1.19
https://doi.org/10.18653/v1/2022.sigmorphon-1.19
https://doi.org/10.18653/v1/2023.emnlp-main.552
https://doi.org/10.18653/v1/2023.emnlp-main.552
https://doi.org/10.18653/v1/2023.acl-long.335
https://doi.org/10.18653/v1/2023.acl-long.335
https://doi.org/10.18653/v1/2020.sigmorphon-1.17
https://doi.org/10.18653/v1/2020.sigmorphon-1.17
https://doi.org/10.1162/tacl_a_00467
https://doi.org/10.1162/tacl_a_00467
https://doi.org/10.1162/tacl_a_00467

Andre Martins and Ramon Astudillo. 2016. From soft-
max to sparsemax: A sparse model of attention and
multi-label classification. In International confer-
ence on machine learning, pages 1614–1623. Pro-
ceedings of Machine Learning Research.

Arya D. McCarthy, Ekaterina Vylomova, Shijie Wu,
Chaitanya Malaviya, Lawrence Wolf-Sonkin, Garrett
Nicolai, Christo Kirov, Miikka Silfverberg, Sabrina J.
Mielke, Jeffrey Heinz, Ryan Cotterell, and Mans
Hulden. 2019. The SIGMORPHON 2019 shared
task: Morphological analysis in context and cross-
lingual transfer for inflection. In Proceedings of the
16th Workshop on Computational Research in Pho-
netics, Phonology, and Morphology, pages 229–244,
Florence, Italy. Association for Computational Lin-
guistics.

Kemal. Oflazer and Murat. Saraçlar. 2018. Turkish Nat-
ural Language Processing. Theory and Applications
of Natural Language Processing. Springer Interna-
tional Publishing, Cham, Switzerland.

Ben Peters and André F. T. Martins. 2020. One-size-
fits-all multilingual models. In Proceedings of the
17th SIGMORPHON Workshop on Computational
Research in Phonetics, Phonology, and Morphology,
pages 63–69, Online. Association for Computational
Linguistics.

Tiago Pimentel, Maria Ryskina, Sabrina J. Mielke,
Shijie Wu, Eleanor Chodroff, Brian Leonard, Gar-
rett Nicolai, Yustinus Ghanggo Ate, Salam Khalifa,
Nizar Habash, Charbel El-Khaissi, Omer Goldman,
Michael Gasser, William Lane, Matt Coler, Arturo
Oncevay, Jaime Rafael Montoya Samame, Gema Ce-
leste Silva Villegas, Adam Ek, Jean-Philippe
Bernardy, Andrey Shcherbakov, Aziyana Bayyr-ool,
Karina Sheifer, Sofya Ganieva, Matvey Plugaryov,
Elena Klyachko, Ali Salehi, Andrew Krizhanovsky,
Natalia Krizhanovsky, Clara Vania, Sardana Ivanova,
Aelita Salchak, Christopher Straughn, Zoey Liu,
Jonathan North Washington, Duygu Ataman, Witold
Kieraś, Marcin Woliński, Totok Suhardijanto, Niklas
Stoehr, Zahroh Nuriah, Shyam Ratan, Francis M.
Tyers, Edoardo M. Ponti, Grant Aiton, Richard J.
Hatcher, Emily Prud’hommeaux, Ritesh Kumar,
Mans Hulden, Botond Barta, Dorina Lakatos, Gá-
bor Szolnok, Judit Ács, Mohit Raj, David Yarowsky,
Ryan Cotterell, Ben Ambridge, and Ekaterina Vy-
lomova. 2021. SIGMORPHON 2021 shared task
on morphological reinflection: Generalization across
languages. In Proceedings of the 18th SIGMOR-
PHON Workshop on Computational Research in Pho-
netics, Phonology, and Morphology, pages 229–259,
Online. Association for Computational Linguistics.

Maciej Rapacz and Aleksander Smywiński-Pohl. 2025.
Low-resource interlinear translation: Morphology-
enhanced neural models for Ancient Greek. In Pro-
ceedings of the First Workshop on Language Models
for Low-Resource Languages, pages 145–165, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Rob van der Goot. 2021. We need to talk about train-
dev-test splits. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 4485–4494, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Ekaterina Vylomova, Jennifer White, Elizabeth Salesky,
Sabrina J. Mielke, Shijie Wu, Edoardo Maria
Ponti, Rowan Hall Maudslay, Ran Zmigrod, Josef
Valvoda, Svetlana Toldova, Francis Tyers, Elena
Klyachko, Ilya Yegorov, Natalia Krizhanovsky,
Paula Czarnowska, Irene Nikkarinen, Andrew
Krizhanovsky, Tiago Pimentel, Lucas Torroba Henni-
gen, Christo Kirov, Garrett Nicolai, Adina Williams,
Antonios Anastasopoulos, Hilaria Cruz, Eleanor
Chodroff, Ryan Cotterell, Miikka Silfverberg, and
Mans Hulden. 2020. SIGMORPHON 2020 shared
task 0: Typologically diverse morphological inflec-
tion. In Proceedings of the 17th SIGMORPHON
Workshop on Computational Research in Phonetics,
Phonology, and Morphology, pages 1–39, Online.
Association for Computational Linguistics.

Silvan Wehrli, Simon Clematide, and Peter Makarov.
2022. CLUZH at SIGMORPHON 2022 shared tasks
on morpheme segmentation and inflection generation.
In Proceedings of the 19th SIGMORPHON Workshop
on Computational Research in Phonetics, Phonology,
and Morphology, pages 212–219, Seattle, Washing-
ton. Association for Computational Linguistics.

Adam Wiemerslage, Miikka Silfverberg, Changbing
Yang, Arya McCarthy, Garrett Nicolai, Eliana Col-
unga, and Katharina Kann. 2022. Morphological
processing of low-resource languages: Where we are
and what’s next. In Findings of the Association for
Computational Linguistics: ACL 2022, pages 988–
1007, Dublin, Ireland. Association for Computational
Linguistics.

Shijie Wu, Ryan Cotterell, and Mans Hulden. 2021. Ap-
plying the transformer to character-level transduction.
In Proceedings of the 16th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics: Main Volume, pages 1901–1907, Online.
Association for Computational Linguistics.

https://doi.org/10.18653/v1/W19-4226
https://doi.org/10.18653/v1/W19-4226
https://doi.org/10.18653/v1/W19-4226
https://doi.org/10.18653/v1/2020.sigmorphon-1.4
https://doi.org/10.18653/v1/2020.sigmorphon-1.4
https://doi.org/10.18653/v1/2021.sigmorphon-1.25
https://doi.org/10.18653/v1/2021.sigmorphon-1.25
https://doi.org/10.18653/v1/2021.sigmorphon-1.25
https://aclanthology.org/2025.loreslm-1.11/
https://aclanthology.org/2025.loreslm-1.11/
https://doi.org/10.18653/v1/2021.emnlp-main.368
https://doi.org/10.18653/v1/2021.emnlp-main.368
https://doi.org/10.18653/v1/2020.sigmorphon-1.1
https://doi.org/10.18653/v1/2020.sigmorphon-1.1
https://doi.org/10.18653/v1/2020.sigmorphon-1.1
https://doi.org/10.18653/v1/2022.sigmorphon-1.21
https://doi.org/10.18653/v1/2022.sigmorphon-1.21
https://doi.org/10.18653/v1/2022.findings-acl.80
https://doi.org/10.18653/v1/2022.findings-acl.80
https://doi.org/10.18653/v1/2022.findings-acl.80
https://doi.org/10.18653/v1/2021.eacl-main.163
https://doi.org/10.18653/v1/2021.eacl-main.163

A Experiment 1

Algorithm 1 Our splitting algorithm for Expt. 1
Require: LEMMAS (all lemmas in data), TRIPLES (all triples in data),

trainsize, ftunesize, testsize
1: OVERLAPLEMMAS ← random(LEMMAS, ⌊0.5× | LEMMAS |⌋)
2: OVERLAPTRIPLES ← {(L, F, I) ∈ TRIPLES | L ∈

OVERLAPLEMMAS}
3: while |OVERLAPTRIPLES| < ⌈trainsize + ftunesize + 0.5 ×

testsize⌉ do
4: OVERLAPLEMMAS ← OVERLAPLEMMAS ∪ random(LEMMAS \

OVERLAPLEMMAS, 1)

5: OVERLAPTRIPLES ← {(L, F, I) ∈ TRIPLES | L ∈
OVERLAPLEMMAS}

6: end while
7: TRAIN ← random(OVERLAPTRIPLES, trainsize)

8: FINETUNE ← random(OVERLAPTRIPLES \ TRAIN, ftunesize)

9: TESTO ← random(OVERLAPTRIPLES\(TRAIN∪FINETUNE), ⌊0.5×
testsize⌋)

10: TESTN ← random(TRIPLES\OVERLAPTRIPLES, ⌈0.5×testsize⌉)
11: TEST ← TESTO ∪ TESTN
12: return TRAIN, FINETUNE, TEST

FAMILY LANGUAGE

Germanic

Old English (ang)
Danish (dan)
German (deu)
English (eng)
Icelandic (isl)
Dutch (nld)
Norwegian Nyorsk (nno)
Norwegian Bokm̊al (nob)
Swedish (swe)

Indo-Aryan
Hindi (hin)
Sanskrit (san)
Urdu (urd)

Iranian Persian (fas)

Oto-Manguean

San Pedro Amuzgos (azg)
Mezquital Otomi (ote)
Sierra Otomi (otm)
Chichimeca-Jonaz (pei)

Romance

Catalan (cat)
Middle French (frm)
Galacian (glg)
Venetian (vec)

Turkish

Bashkir (bak)
Kazakh (kaz)
Turkmen (tuk)
Uzbek (uzb)

Uralic

Estonian (est)
Finnish (fin)
Komi-Zyrian (kpv)
Karelian (krl)
Moksha (mdf)
Meadow Mari (mhr)
Erzya (myv)
Livvi (olo)
Northern Sami (sme)
Udmurt (udm)
Veps (vep)

Table 6: The 36 SIGMORPHON 2020 languages used in
Experiment 1.

Family Seen Unseen Difference
Germanic 86.422 79.230 -7.193

Indo-Aryan 97.176 79.724 -17.451
Iranian 99.673 76.447 -23.227

Oto-Manguean 90.339 54.920 -35.419
Romance 99.172 93.600 -5.572

Turkic 95.098 83.532 -11.567
Uralic 92.064 87.013 -5.052

Macro-average 94.278 79.209 -15.068

Table 7: Experiment 1 accuracy by language family,
averaged across neural architectures & seeds. This can
be compared to Table 2 in Goldman et al. (2022), though
the family groupings in their paper are different than
those in their data and the SIGMORPHON data. Rather
than attempt to replicate this grouping without sufficient
information to do so, we instead report grouping by the
language families in Goldman et al. (2022)’s data splits.

0.0

2.5

5.0

7.5

0.00 0.25 0.50 0.75 1.00
Test Accuracy on Seen Lemmas

D
en

si
ty

Model

CHR−TRM

CLUZH

DeepSpin

Density of Accuracy on Seen Lemmas

0

1

2

3

4

5

0.00 0.25 0.50 0.75 1.00
Test Accuracy on Novel Lemmas

D
en

si
ty

Model

CHR−TRM

CLUZH

DeepSpin

Density of Accuracy on Novel Lemmas

0

2

4

6

8

0.00 0.25 0.50 0.75 1.00
Drop in Accuracy from Seen to Novel Lemmas

D
en

si
ty

Model

CHR−TRM

CLUZH

DeepSpin

Density of Accuracy Drop

Figure 7: SEEN and NOVEL accuracy and DROP are
beta distributed in Experiment 1.

A.1 Beta regression models for SEEN lemmas
The following provides the full R output of the SEEN ∼ LEM-
MAS beta regression models in Experiment 1 (§3.4).

CHR-TRM

Call: gam(formula = scaled_seen ~ log(train_lemmas),
family = betar(link = "logit"),
data = wu_res_clean)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.7781 -0.7678 0.0000 0.0000 0.7016

SEEN NOVEL DROP
Lang CHR-TRM CLUZH DEEPSPIN CHR-TRM CLUZH DEEPSPIN CHR-TRM CLUZH DEEPSPIN

ang 72.873 72.150 72.631 46.236 49.739 49.582 -26.637 -22.411 -23.049
azg 93.980 93.060 92.480 23.400 45.020 43.100 -70.580 -48.040 -49.380
bak 99.640 99.440 99.600 92.460 93.440 93.380 -7.180 -6.000 -6.220
cat 98.880 98.740 98.500 96.160 96.980 96.440 -2.720 -1.760 -2.060
dan 71.591 71.992 66.814 64.116 66.168 66.646 -7.475 -5.825 -0.168
deu 94.770 95.236 94.516 88.576 89.788 89.635 -6.194 -5.448 -4.881
eng 94.847 95.062 94.868 94.783 94.906 95.364 -0.064 -0.156 0.496
est 93.980 93.040 93.920 75.680 77.760 80.280 -18.300 -15.280 -13.640
fas 99.900 99.340 99.780 50.880 90.020 88.440 -49.020 -9.320 -11.340
fin 97.443 96.238 96.972 92.917 91.703 92.642 -4.527 -4.535 -4.330
frm 99.480 98.920 99.080 89.640 96.460 96.160 -9.840 -2.460 -2.920
glg 99.580 99.120 99.280 88.880 94.820 93.960 -10.700 -4.300 -5.320
hin 100.000 99.960 100.000 43.800 95.440 95.240 -56.200 -4.520 -4.760
isl 91.883 92.576 90.887 81.373 83.005 81.531 -10.511 -9.571 -9.356
kaz 98.060 97.580 98.020 39.400 78.320 79.100 -58.660 -19.260 -18.920
kpv 95.108 93.541 94.138 92.876 91.959 93.169 -2.231 -1.582 -0.969
krl 97.345 93.987 97.185 87.211 84.906 89.064 -10.134 -9.081 -8.121
mdf 90.467 87.596 89.890 88.012 86.236 87.894 -2.455 -1.360 -1.996
mhr 88.850 85.997 86.628 85.631 83.434 84.338 -3.220 -2.564 -2.289
myv 91.041 88.428 90.775 90.909 89.744 91.240 -0.133 1.316 0.465
nld 98.305 97.977 97.958 92.958 92.605 93.174 -5.347 -5.371 -4.783
nno 87.080 87.512 86.896 74.293 74.390 79.770 -12.788 -13.121 -7.126
nob 73.347 75.938 72.768 74.934 74.638 79.460 1.586 -1.300 6.692
olo 89.789 89.986 90.338 88.761 88.098 89.441 -1.028 -1.887 -0.897
ote 98.498 98.097 98.338 83.882 86.339 86.858 -14.615 -11.758 -11.479
otm 97.177 96.997 96.797 71.843 76.480 77.297 -25.335 -20.517 -19.500
pei 74.180 73.720 70.740 17.360 24.200 23.260 -56.820 -49.520 -47.480
san 92.520 92.320 91.280 78.180 83.580 82.820 -14.340 -8.740 -8.460
sme 98.594 97.689 97.931 90.784 88.873 89.073 -7.810 -8.816 -8.858
swe 94.074 94.905 93.951 86.758 87.056 87.718 -7.316 -7.849 -6.233
tuk 85.760 86.340 84.200 73.760 85.600 85.360 -12.000 -0.740 1.160
udm 97.250 95.753 96.656 95.822 94.748 95.685 -1.428 -1.005 -0.971
urd 99.520 99.460 99.520 42.340 97.620 98.500 -57.180 -1.840 -1.020
uzb 97.340 99.180 96.020 89.160 96.780 95.620 -8.180 -2.400 -0.400
vec 99.580 99.380 99.520 84.120 94.660 94.920 -15.460 -4.720 -4.600
vep 80.656 79.728 81.182 70.419 70.456 71.650 -10.237 -9.272 -9.532

Table 8: Full results by language and neural architecture, averaged across our 5 seeds, for Experiment 1.

(Dispersion Parameter for Beta regression family
taken to be 0.1221)

Null Deviance: -56.1663 on 179 degrees of freedom
Residual Deviance: -67.2103 on 178 degrees of freedom
AIC: -440724.1

Number of Local Scoring Iterations: 2

Anova for Parametric Effects
Df Sum Sq Mean Sq F value Pr(>F)

log(train_lemmas) 1 0.8451 0.84509 6.9219 0.009261 **
Residuals 178 21.7319 0.12209

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Intercept) log(train_lemmas)
3.1273269 -0.1189933

CLUZH

Call: gam(formula = scaled_seen ~ log(train_lemmas),
family = betar(link = "logit"),
data = cluzh_res_clean)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.7758 -0.9112 0.0000 0.0000 0.6348

(Dispersion Parameter for Beta regression family
taken to be 0.116)

Null Deviance: -42.169 on 179 degrees of freedom
Residual Deviance: -50.6733 on 178 degrees of freedom

AIC: -425049.3

Number of Local Scoring Iterations: 2

Anova for Parametric Effects
Df Sum Sq Mean Sq F value Pr(>F)

log(train_lemmas) 1 1.0235 1.02345 8.8191 0.003392 **
Residuals 178 20.6568 0.11605

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Intercept) log(train_lemmas)
3.1582321 -0.1301994

DEEPSPIN

Call: gam(formula = scaled_seen ~ log(train_lemmas),
family = betar(link = "logit"),
data = ds_res_clean)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.7519 -0.7813 0.0000 0.0000 0.6982

(Dispersion Parameter for Beta regression family
taken to be 0.1325)

Null Deviance: -49.5337 on 179 degrees of freedom
Residual Deviance: -60.7565 on 178 degrees of freedom
AIC: -424201.9

Number of Local Scoring Iterations: 2

Anova for Parametric Effects

Df Sum Sq Mean Sq F value Pr(>F)
log(train_lemmas) 1 0.6084 0.60839 4.5909 0.0335 *
Residuals 178 23.5891 0.13252

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Intercept) log(train_lemmas)
2.90407660 -0.09775024

A.2 Beta regression models for NOVEL
lemmas

The following provides the full R output of the NOVEL ∼
LEMMAS beta regression models in Experiment 1 (§3.4).

CHR-TRM

Call: gam(formula = scaled_novel ~ log(train_lemmas),
family = betar(link = "logit"),
data = wu_res_clean)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.3688 -0.9631 0.0000 0.0000 0.9252

(Dispersion Parameter for Beta regression
family taken to be 0.2352)

Null Deviance: 51.5501 on 179 degrees of freedom
Residual Deviance: 79.1182 on 178 degrees of freedom
AIC: -193804.2

Number of Local Scoring Iterations: 5

Anova for Parametric Effects
Df Sum Sq Mean Sq F value Pr(>F)

log(train_lemmas) 1 29.862 29.8618 126.96 < 2.2e-16 ***
Residuals 178 41.867 0.2352

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Intercept) log(train_lemmas)
-2.5611164 0.5577768

CLUZH

Call: gam(formula = scaled_novel ~ log(train_lemmas),
family = betar(link = "logit"),
data = cluzh_res_clean)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.51904 -0.97321 0.00000 0.09055 0.81805

(Dispersion Parameter for Beta regression family
taken to be 0.284)

Null Deviance: 30.1758 on 179 degrees of freedom
Residual Deviance: 34.5711 on 178 degrees of freedom
AIC: -261196.3

Number of Local Scoring Iterations: 5

Anova for Parametric Effects
Df Sum Sq Mean Sq F value Pr(>F)

log(train_lemmas) 1 1.888 1.88793 6.6468 0.01074 *
Residuals 178 50.558 0.28404

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Intercept) log(train_lemmas)
0.5417008 0.1484194

DEEPSPIN

Call: gam(formula = scaled_novel ~ log(train_lemmas),
family = betar(link = "logit"),
data = ds_res_clean)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.5407 -0.9962 0.0000 0.0000 0.8116

(Dispersion Parameter for Beta regression family
taken to be 0.2838)

Null Deviance: 26.5794 on 179 degrees of freedom

Residual Deviance: 33.2525 on 178 degrees of freedom
AIC: -269455.6

Number of Local Scoring Iterations: 5

Anova for Parametric Effects
Df Sum Sq Mean Sq F value Pr(>F)

log(train_lemmas) 1 3.002 3.00205 10.579 0.001368 **
Residuals 178 50.510 0.28377

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Intercept) log(train_lemmas)
0.3111430 0.1895828

A.3 Beta regression models for DROP
The following provides the full R output of the DROP ∼ LEM-
MAS beta regression models in Experiment 1 (§3.4).

CHR-TRM

all: gam(formula = scaled_diff ~ log(train_lemmas),
family = betar(link = "logit"),
data = wu_res_clean)

Deviance Residuals:
Min 1Q Median 3Q Max

-0.96697 -0.83717 0.05881 0.92129 1.11801

(Dispersion Parameter for Beta regression family
taken to be 0.14)

Null Deviance: 117.7257 on 179 degrees of freedom
Residual Deviance: 128.5483 on 178 degrees of freedom
AIC: 43583.62

Number of Local Scoring Iterations: 4

Anova for Parametric Effects
Df Sum Sq Mean Sq F value Pr(>F)

log(train_lemmas) 1 32.169 32.169 229.69 < 2.2e-16 ***
Residuals 178 24.929 0.140

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Intercept) log(train_lemmas)
2.9609546 -0.5237525

CLUZH

Call: gam(formula = scaled_diff ~ log(train_lemmas),
family = betar(link = "logit"),
data = cluzh_res_clean)

Deviance Residuals:
Min 1Q Median 3Q Max

-0.9184 -0.7647 -0.6405 0.9666 1.1398

(Dispersion Parameter for Beta regression family
taken to be 0.0997)

Null Deviance: 128.5974 on 179 degrees of freedom
Residual Deviance: 131.0342 on 178 degrees of freedom
AIC: 81136.68

Number of Local Scoring Iterations: 4

Anova for Parametric Effects
Df Sum Sq Mean Sq F value Pr(>F)

log(train_lemmas) 1 3.5969 3.5969 36.089 1.038e-08 ***
Residuals 178 17.7409 0.0997

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Intercept) log(train_lemmas)
0.2686925 -0.1737422

DEEPSPIN

Call: gam(formula = scaled_diff ~ log(train_lemmas),
family = betar(link = "logit"),
data = ds_res_clean)

Deviance Residuals:
Min 1Q Median 3Q Max

-0.9166 -0.7448 -0.5476 0.9549 1.1635

(Dispersion Parameter for Beta regression family
taken to be 0.1021)

Null Deviance: 125.1004 on 179 degrees of freedom
Residual Deviance: 128.2078 on 178 degrees of freedom
AIC: 84275.73

Number of Local Scoring Iterations: 4

Anova for Parametric Effects
Df Sum Sq Mean Sq F value Pr(>F)

log(train_lemmas) 1 4.3868 4.3868 42.981 5.781e-10 ***
Residuals 178 18.1674 0.1021

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Intercept) log(train_lemmas)
0.3609071 -0.1935463

B Experiment 2

FAMILY LANGUAGE

Niger-Congo

Akan (aka)
Gã (gaa)
Kongo (kon)
Lingala (lin)
Luganda (lug)
Chewa (nya)
Shona (sna)
Sotho (sot)
Swahili (swa)
Zulu (zul)

Romance

Asturian (ast)
Catalan (cat)
Middle French (frm)
Friulian (fur)
Galacian (glg)
Ladin (lld)
Venetian (vec)
Anglo-Normal (xno)

Uralic

Estonian (est)
Finnish (fin)
Ingrian (izh)
Komi-Zyrian (kpv)
Karelian (krl)
Livonian (liv)
Ludic (lud)
Moksha (mdf)
Meadow Mari (mhr)
Erzya (myv)
Livvi (olo)
Northern Sami (sme)
Udmurt (udm)
Veps (vep)
Votic (vot)
Võro (vro)

Table 9: The 34 languages used to replicate the findings
of Goldman et al. (2022) in Experiment 2.

B.1 Beta regression models for SIGMORPHON
The following provides the full R output of the multi-predictor
beta regression models trained to predict SIGMORPHON accu-
racy in Experiment 2 (§4.2).

CHR-TRM

Call: gam(formula = SIGMORPHON_scaled_acc ~
log(SIGMORPHON_train_size) + log(SIGMORPHON_train_lemmas),
family = betar(link = "logit"), data = CHRTRM)

Deviance Residuals:

0

3

6

9

12

0.00 0.25 0.50 0.75 1.00
SIGMORPHON Test Accuracy

D
en

si
ty

Model

CHR−TRM

CLUZH

DeepSpin

Density of SIGMORPHON et al. Test Accuracy

0

1

2

3

4

5

0.00 0.25 0.50 0.75 1.00
Goldman et al. Test Accuracy

D
en

si
ty

Model

CHR−TRM

CLUZH

DeepSpin

Density of Goldman et al. Test Accuracy

0.0

2.5

5.0

7.5

0.00 0.25 0.50 0.75 1.00
Accuracy Drop

D
en

si
ty

Model

CHR−TRM

CLUZH

DeepSpin

Density of Accuracy Drop

Figure 8: Replicated GOLDMAN and SIGMORPHON
accuracy as well as DROP are beta distributed in Experi-
ment 2.

Min 1Q Median 3Q Max
-1.9418 -0.7337 0.0000 0.0000 0.0000

(Dispersion Parameter for Beta regression family
taken to be 0.1921)

Null Deviance: -27.6167 on 33 degrees of freedom
Residual Deviance: -15.6955 on 31 degrees of freedom
AIC: -17287.93

Number of Local Scoring Iterations: 2

Anova for Parametric Effects
Df Sum Sq Mean Sq F value Pr(>F)

log(SIGMORPHON_train_size) 1 2.1633 2.16325 11.2586 0.002106 **
log(SIGMORPHON_train_lemmas) 1 1.6542 1.65420 8.6093 0.006245 **
Residuals 31 5.9564 0.19214

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Intercept) log(SIGMORPHON_train_size) log(SIGMORPHON_train_lemmas)
-0.5531629 0.7623518 -0.5661172

CLUZH

Call: gam(formula = SIGMORPHON_scaled_acc ~
log(SIGMORPHON_train_size) + log(SIGMORPHON_train_lemmas),
family = betar(link = "logit"), data = CLUZH)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.9034 -1.0654 0.0000 0.0000 0.4304

(Dispersion Parameter for Beta regression family
taken to be 0.2247)

Null Deviance: -29.4498 on 33 degrees of freedom
Residual Deviance: -17.2346 on 31 degrees of freedom

GOLDMAN SIGMORPHON DIFFERENCE
Lang CHR-TRM CLUZH DEEPSPIN CHR-TRM CLUZH DEEPSPIN CHR-TRM CLUZH DEEPSPIN

aka 100.000 99.607 100.000 30.038 99.487 94.737 -69.962 -0.120 -5.263
ast 99.314 98.49 99.726 67.645 95.664 99.133 -31.669 -2.826 -0.593
cat 99.778 99.717 99.778 97.507 97.823 97.44 -2.271 -1.894 -2.338
est 95.194 94.317 94.566 79.586 81.069 82.214 -15.608 -13.248 -12.351
fin 99.56 99.746 99.782 94.503 94.147 95.156 -5.057 -5.6 -4.626
frm 99.744 99.488 99.701 94.056 95.99 96.921 -5.688 -3.498 -2.781
fur 99.741 99.353 99.806 70.716 100.000 99.936 -29.025 0.647 0.130
gaa 99.408 100.000 100.000 53.216 100.000 100.000 -46.192 0.000 0.000
glg 99.840 99.680 99.782 95.861 97.037 97.545 -3.98 -2.643 -2.237
izh 88.839 79.018 87.500 26.484 41.553 51.142 -62.355 -37.465 -36.358
kon 98.077 98.718 94.231 88.125 98.750 95.000 -9.952 0.032 0.769
kpv 96.956 96.43 96.805 94.085 93.645 93.798 -2.871 -2.785 -3.007
krl 99.264 99.071 99.475 90.19 88.502 91.257 -9.075 -10.569 -8.218
lin 100.000 100.000 100.000 56.250 100.000 100.000 -43.750 0.000 0.000
liv 96.509 94.638 95.012 50.422 80.141 77.465 -46.086 -14.498 -17.548
lld 99.586 99.034 99.862 60.173 93.75 98.338 -39.413 -5.284 -1.524
lud 28.049 24.39 50.000 1.835 4.128 20.642 -26.214 -20.262 -29.358
lug 90.583 88.434 90.174 18.561 67.153 70.699 -72.022 -21.281 -19.475
mdf 93.391 92.403 93.286 91.742 90.669 91.489 -1.649 -1.734 -1.797
mhr 92.957 93.288 93.511 86.974 85.667 86.18 -5.983 -7.621 -7.331
myv 94.13 93.125 93.758 94.162 93.489 93.974 0.033 0.364 0.216
nya 100.000 99.883 100.000 75.858 100.000 100.000 -24.142 0.117 0.000
olo 94.207 94.726 95.246 91.506 91.074 92.516 -2.701 -3.653 -2.730
sme 99.673 99.537 99.737 94.496 93.053 95.537 -5.177 -6.484 -4.200
sna 100.000 99.781 100.000 26.274 90.784 93.726 -73.726 -8.996 -6.275
sot 97.980 97.980 100.000 0.000 100.000 100.000 -97.980 2.020 0.000
swa 100.000 100.000 100.000 42.959 99.898 100.000 -57.041 -0.102 0.000
udm 98.492 98.52 98.682 96.413 95.596 96.366 -2.079 -2.924 -2.315
vec 99.684 99.512 99.570 91.591 97.310 97.225 -8.093 -2.202 -2.344
vep 83.71 83.056 80.728 77.947 77.197 78.807 -5.764 -5.859 -1.922
vot 85.053 73.31 84.698 4.895 32.517 53.846 -80.158 -40.792 -30.851
vro 59.223 48.544 67.961 0.000 13.542 26.042 -59.223 -35.002 -41.92
xno 96.078 70.588 94.118 0.000 15.686 94.118 -96.078 -54.902 0.000
zul 92.308 87.18 89.744 32.222 75.556 75.556 -60.085 -11.624 -14.188

Table 10: Full results by language and neural architecture for Experiment 2.

AIC: -15893.34

Number of Local Scoring Iterations: 2

Anova for Parametric Effects
Df Sum Sq Mean Sq F value Pr(>F)

log(SIGMORPHON_train_size) 1 4.0506 4.0506 18.0264 0.0001837 ***
log(SIGMORPHON_train_lemmas) 1 0.5878 0.5878 2.6159 0.1159300
Residuals 31 6.9659 0.2247

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Intercept) log(SIGMORPHON_train_size) log(SIGMORPHON_train_lemmas)
-1.1303584 0.6168127 -0.3049881

DEEPSPIN
Call: gam(formula = SIGMORPHON_scaled_acc ~

log(SIGMORPHON_train_size) + log(SIGMORPHON_train_lemmas),
family = betar(link = "logit"), data = DeepSpin)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.9276 -0.7471 0.0000 0.0000 0.5294

(Dispersion Parameter for Beta regression family
taken to be 0.1431)

Null Deviance: -24.6582 on 33 degrees of freedom
Residual Deviance: -18.3863 on 31 degrees of freedom
AIC: -17490.71

Number of Local Scoring Iterations: 2

Anova for Parametric Effects
Df Sum Sq Mean Sq F value Pr(>F)

log(SIGMORPHON_train_size) 1 1.4196 1.41962 9.9226 0.003603 **

log(SIGMORPHON_train_lemmas) 1 0.9939 0.99394 6.9472 0.012994 *
Residuals 31 4.4352 0.14307

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Intercept) log(SIGMORPHON_train_size) log(SIGMORPHON_train_lemmas)
0.08735762 0.59994250 -0.43981367

B.2 Beta regression models for GOLDMAN
The following provides the full R output of the multi-predictor
beta regression models trained to predict GOLDMAN accuracy
in Experiment 2 (§4.2).

CHR-TRM

Call: gam(formula = Goldman_scaled_acc ~ log(Goldman_train_lemmas) +
log(Goldman_train_size), family = betar(link = "logit"),
data = CHRTRM)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.7181 -0.9309 0.0000 0.0000 1.3871

(Dispersion Parameter for Beta regression family taken to be 0.3214)

Null Deviance: -1.0739 on 33 degrees of freedom
Residual Deviance: 9.2018 on 31 degrees of freedom
AIC: -3878.832

Number of Local Scoring Iterations: 6

Anova for Parametric Effects
Df Sum Sq Mean Sq F value Pr(>F)

log(Goldman_train_lemmas) 1 14.2329 14.2329 44.2893 1.932e-07 ***
log(Goldman_train_size) 1 0.7122 0.7122 2.2163 0.1467

Residuals 31 9.9622 0.3214

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Intercept) log(Goldman_train_lemmas) log(Goldman_train_size)
-4.5197092 0.5323991 0.2583534

CLUZH

Call: gam(formula = Goldman_scaled_acc ~ log(Goldman_train_size) +
log(Goldman_train_lemmas), family = betar(link = "logit"),
data = CLUZH)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.6752 -0.8953 0.0000 0.0000 0.7093

(Dispersion Parameter for Beta regression family taken to be 0.4671)

Null Deviance: -22.2953 on 33 degrees of freedom
Residual Deviance: -11.0956 on 31 degrees of freedom
AIC: -10675.54

Number of Local Scoring Iterations: 2

Anova for Parametric Effects
Df Sum Sq Mean Sq F value Pr(>F)

log(Goldman_train_size) 1 7.0203 7.0203 15.0303 0.0005137 ***
log(Goldman_train_lemmas) 1 0.0050 0.0050 0.0107 0.9182216
Residuals 31 14.4794 0.4671

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Intercept) log(Goldman_train_size) log(Goldman_train_lemmas)
-1.83118611 0.41435242 -0.02250918

DEEPSPIN

Call: gam(formula = Goldman_scaled_acc ~ log(Goldman_train_size) +
log(Goldman_train_lemmas), family = betar(link = "logit"),
data = DeepSpin)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.6214 -0.9821 0.0000 0.0000 0.7569

(Dispersion Parameter for Beta regression family taken to be 0.3064)

Null Deviance: -19.4575 on 33 degrees of freedom
Residual Deviance: -12.6952 on 31 degrees of freedom
AIC: -12350.04

Number of Local Scoring Iterations: 2

Anova for Parametric Effects
Df Sum Sq Mean Sq F value Pr(>F)

log(Goldman_train_size) 1 3.5682 3.5682 11.6462 0.001809 **
log(Goldman_train_lemmas) 1 0.8896 0.8896 2.9036 0.098388 .
Residuals 31 9.4980 0.3064

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Intercept) log(Goldman_train_size) log(Goldman_train_lemmas)
-1.0403182 0.5326597 -0.3004978

B.3 Beta regression models for DROP
The following provides the full R output of the multi-predictor
beta regression models trained to predict DROP from SIGMOR-
PHON to GOLDMAN accuracy in Experiment 2 (§4.2).

CHR-TRM

Call: gam(formula = scaled_drop ~ log(Goldman_train_lemmas)
+ log(-1 * train_lemma_diff_raw) + log(Goldman_train_size),
family = betar(link = "logit"), data = CHRTRM)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.0309 0.0000 0.6883 1.1058 2.1611

(Dispersion Parameter for Beta regression family
taken to be 0.1944)

Null Deviance: -4.2629 on 33 degrees of freedom
Residual Deviance: 20.2587 on 30 degrees of freedom
AIC: 956.8627

Number of Local Scoring Iterations: 6

Anova for Parametric Effects
Df Sum Sq Mean Sq F value Pr(>F)

log(Goldman_train_lemmas) 1 10.9621 10.9621 56.3870 2.267e-08 ***
log(-1 * train_lemma_diff_raw) 1 0.2024 0.2024 1.0412 0.3157
log(Goldman_train_size) 1 0.1658 0.1658 0.8530 0.3631
Residuals 30 5.8323 0.1944

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Intercept) log(Goldman_train_lemmas) log(-1 * train_lemma_diff_raw)
3.7697667 -1.2338483 0.1499576
log(Goldman_train_size)
0.1537048

CLUZH

Call: gam(formula = scaled_drop ~ log(Goldman_train_lemmas)
+ log(-1 * train_lemma_diff_raw) + log(Goldman_train_size),
family = betar(link = "logit"), data = CLUZH)

Deviance Residuals:
Min 1Q Median 3Q Max

-0.7097 0.0000 0.3350 1.0758 1.4194

(Dispersion Parameter for Beta regression family
taken to be 0.1584)

Null Deviance: -3.114 on 33 degrees of freedom
Residual Deviance: 4.0005 on 30 degrees of freedom
AIC: 5837.224

Number of Local Scoring Iterations: 2

Anova for Parametric Effects
Df Sum Sq Mean Sq F value Pr(>F)

log(Goldman_train_lemmas) 1 2.5226 2.52261 15.9285 0.0003913 ***
log(-1 * train_lemma_diff_raw) 1 0.0524 0.05242 0.3310 0.5693799
log(Goldman_train_size) 1 0.0128 0.01279 0.0808 0.7782086
Residuals 30 4.7511 0.15837

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Intercept) log(Goldman_train_lemmas) log(-1 * train_lemma_diff_raw)
-0.63896835 -0.08228353 -0.26488998
log(Goldman_train_size)
0.04563225

DEEPSPIN

Call: gam(formula = scaled_drop ~ log(-1 * train_lemma_diff_raw) +
log(Goldman_train_size) + log(Goldman_train_lemmas),
family = betar(link = "logit"), data = DeepSpin)

Deviance Residuals:
Min 1Q Median 3Q Max

-0.8752 0.0000 0.0000 0.9393 1.5220

(Dispersion Parameter for Beta regression family taken to be 0.1435)

Null Deviance: -16.5461 on 33 degrees of freedom
Residual Deviance: -12.7918 on 30 degrees of freedom
AIC: 6982.896

Number of Local Scoring Iterations: 2

Anova for Parametric Effects
Df Sum Sq Mean Sq F value Pr(>F)

log(-1 * train_lemma_diff_raw) 1 1.6345 1.63447 11.3933 0.002052 **
log(Goldman_train_size) 1 0.1767 0.17666 1.2314 0.275945
log(Goldman_train_lemmas) 1 0.3227 0.32272 2.2495 0.144106
Residuals 30 4.3038 0.14346

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Intercept) log(-1 * train_lemma_diff_raw) log(Goldman_train_size)
-1.0177739 -0.5704532 -0.1261425
log(Goldman_train_lemmas)
0.4467069

