

JORDAN KODNER¹ SARAH PAYNE^{1*} SALAM KHALIFA^{1*} ZOEY LIU²

Stony Brook University

MORPHOLOGICAL INFLECTION

Patterns of word formation which express grammatical categories

- Processes vary dramatically across languages: pre/in/circum/suffixation, stem mutation, reduplication...
- So do which grammatical categories are marked: number, tense, mood, voice, aspect, evidentiality,

CONSEQUENCES OF THE DATA SAMPLING STRATEGY

SAMPLING STRATEGIES

- **UNIFORM** random sampling
- **WEIGHTED** frequency-weighted random sampling
- **OVERLAPAWARE** makes sure that ~50% of test items have OOV feature sets

SYSTEMS

Test vs S Train	μ %featsAttested	σ
UNIFORM	80.33%	19.50%
WEIGHTED	90.44	11.13
OVERLAPAWARE	48.81	0.98
Test vs L Train	μ %featsAttested	σ
Test vs L Train UNIFORM	μ %featsAttested 96.17%	σ 5.55%
Test vs L Train UNIFORM WEIGHTED	μ %featsAttested 96.17% 95.36	σ 5.55% 7.28

possession, case...

INFLECTION AS AN NLP TASK

TRAIN: given (lemma, infl. form, feat. set) triples

swam V;PST swim

V; PRS; 3; SG eat eats

cats N;PL cat

predict inflected forms from **TEST:** (lemma, feat. set) pairs

swim	?	V;PRS;3;SG	→ swims
box	?	N;PL	→ boxes
cat	?	N;SG	→ cat

THREE OVERSIGHTS IN PRIOR WORK

- **UNIFORM SAMPLING** creates an unnatural bias 1) towards "easier" low-frequency regular types. **We** propose naturalistic frequency WEIGHTED sampling or controlled OVERLAPAWARE sampling to balance OOV lemmas and feature sets in the evaluation data.
- 2) **SINGLE DATA SPLITS** hide variability intrinsic to sampling from corpora and assumes the generalizability and informativity of test results. **We** propose sampling with several random seeds and measuring variability. 3) UNCONTROLLED OVERLAPS between lemmas and feature sets independently in train and test obscure the contributions of the language, model, and corpus on performance. We propose controlling for lemma and feature set overlap.

Drawn from SIGMORPHON 2022 Shared Task

- **CHR-TRM** (Wu et al., 2021): a character transformer
- **CLUZH** (Wehrli et al., 2022): a character transducer **GR** = greedy, **B4** = beam size 4 decoding
- **NONNEUR:** non-neural baseline

RESULTS

- Some **featsNovel** items are present in test regardless of sampling strategy, but **OVERLAPAWARE** yields the most **featsNovel** and most consistent rate across languages and seeds
- Performance is generally lowest on **OVERLAPAWARE** (due to the large number of **featsNovel** items)
- Ranking of **UNIFORM** and **WEIGHTED** performance depends more on language than model or training size
- However, variability across seeds is highest for **OVERLAPAWARE**. This suggests that it matters which feature sets are in **featsNovel** vs **featsAttested**

CONSEQUENCES OF TEST ITEM OVERLAP TYPES

TYPES OF TRAIN-TEST OVERLAP

FOUR LICIT TYPES OF OVERLAP

Since lemmas and feature sets can be combined, there are four distinct types of licit test item.

ILLUSTRATIVE TRAINING SET

eat	eating	V;V.PTCP;PRS
run	ran	V;PST

ILLUSTRATIVE TEST SET

eat V;PST	← No C)OV
-----------	--------	-----

RESULTS

- Performance is >50% lower on **featsNovel** (featsAttested (irrespective of training size and for each system
- No consistent drop for OOV lemmas () vs attested lemmas (
- Wide variability across seeds

TYPOLOGY AND GENERALIZATION

IS GENERALIZATION TO UNSEEN FEATURE SETS A REASONABLE **EXPECTATION?**

PARADIGM SIZE

- + Large paradigms \rightarrow OOV feature sets likely

ain La
ze St
nall A
S
G
T
S
E
rge A

Train Size	Language Strategy	Avg. Score Difference
Small	Arabic	33.00%
	Swahili	40.04
	German	40.35
	Turkish	41.96
	Spanish	52.60
	English	74.10
Large	Arabic	35.79%
	German	36.19
	Swahili	39.26
	Turkish	52.14
	Spanish	61.01
	English	80.17

← Only feature set is OOV V;NFIN run ← Only lemma is OOV V;PST see go

Visualization of overlap types. We predicted that featsNovel would prove more challenging than featsAttested.

Small paradigms \rightarrow OOV feature sets unlikely

AGGLUTINATIVITY

- + Agglutinative \rightarrow inflection of feature set derivable from inflections of individual features
- \rightarrow inflection of feature set not - Fusional derivable from individual features

RESULTS

- For all systems, **generalization to unseen feature sets** proves challenging even for agglutinative languages (Swahili and Turkish) where this should be possible
- Suggests unresponsiveness to morphological typology
- And identifies an area of work for future improvement

If systems effectively generalized to novel feature sets, Avg. Score Difference between featsNovel and featsAttested subsets would be lowest for agglutinative Swahili and Turkish

